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1 Long-Term Models for Integration of RE Technologies  
In this task we investigate in depth the generation and transmission expansion planning 
problem. For this purpose, in Section 2 we present a complete literature review on this 
capacity expansion problem. In Section 2.1, we present the current models and 
literature gaps on traditional co-optimization (cost minimization) problems and, in 
Section 2.2, we do the same for the co-planning equilibrium models that consider the 
introduction of game theory into this capacity expansion problem. In Section 3 we 
develop the formulation of the well-known cost-minimization problem that is currently 
used by the vast majority of TSOs in the world. We present both the deterministic 
version in Section 3.1 and we present a comparison of diverse scenario based methods 
to represent wind uncertainty in Section 3.2. Additionally, in Section 4, we formulate the 
our co-planning equilibrium problem and its properties. In Section 4.1 we present the 
notation used along the whole Section4 . In Section 4.2 we introduce the novel bi-level 
generation and  transmission expansion planning model. The latter accounts for the fact 
that both generation expansion and operational decisions are made by distinct profit-
maximising GENCOs with different objectives from those of a welfare-maximising TSO. 
In Section 4.3 we compute the social welfare loss of implementing a cost-minimization 
model used by TSOs, instead of our proposed approach that allow us to internalise 
strategic interactions in electricity markets. Finally, in Section 5, we introduce the bi-
level generation and transmission expansion planning under uncertainty, we define the 
stochastic model and a min-mar regret bi-level model, we develop a case and we show 
some illustrative results. 

2 Review on generation and transmission expansion co-
planning models under a market environment 

 
Power systems were conventionally structured under a centralised environment, where 
a cost minimising vertically-integrated utility was in charge of deciding, among other 
matters, both transmission expansion planning (TEP) and generation expansion planning 
(GEP). However, due to computational limitations, in the past TEP and GEP were usually 
solved as independent problems. A great amount of research has been published on 
both separately, with the focus shifting recently to contemplating bigger networks, 
more detailed operation of conventional units, renewable generation, batteries, 
distributed generation and their corresponding support schemes. For a complete review 
of these separate problems please refer to [1]. 
 
 With the development of computational capability, the joint consideration of TEP and 
GEP became possible, allowing to jointly consider the important links between 
generation dispatch and transmission supply along with their siting and sizing decisions. 
These models, usually known as generation expansion planning and transmission 
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expansion planning co-optimisation models (GEPTEP co-optimisation models), take into 
consideration the links between generation and transmission, resulting in a lower 
system cost compared to a separate GEP / TEP optimisation approach, as shown in [2]-
[5]. This cost minimisation framework is equivalent to maximizing the total welfare of 
the system when three assumptions are made: i) perfect competition, ii) simultaneous 
operating and investment decisions, and iii) perfect information. However, this co-
optimisation framework does not address sequential and strategic decisions that 
emerge in a decentralised market environment. 
 
The vast majority of power systems today are structured in a liberalised market, in which 
private companies compete with each other (in generation and retail). Therefore, the 
investment and operation decisions in this market environment are quite different from 
those in a centralised environment. In a liberalised market, generation expansion and 
operation are decided in a competitive way where every generation company (GENCO) 
makes its own decisions aiming to maximise total profits, while the transmission 
planning keeps being centralised. In this sense, the liberalisation of electricity markets 
has introduced new dynamics that lead to conflicting interests between the different 
decision makers in the electric power system. The behaviour of GENCOs can be 
modelled by means of game theory to represent their strategic interactions as a Nash 
equilibrium. Moreover, if we consider the sequence between investment and operation 
for these strategic agents, hierarchical models (bi-level) allow us to represent such 
structures. Bearing this in mind, hierarchical equilibrium models represent an adequate 
tool to study how different agents in GEPTEP problems behave under a market 
environment.  
 
Once the context is set, we can move on from the term “co-optimisation” to the more 
accurate “co-planning”. We introduce this term, given that these models do not address, 
in essence, a single optimisation problem. Thus, co-planning models, help us to 
understand how Transmission Companies (TRANSCOs) and Generation Companies 
(GENCOs) take strategic and sequential decisions. For example, consider the case where 
transmission expansion decisions are made first, and subsequently, under a market 
framework, GENCOs make their expansion decisions. In this sense, equilibrium models, 
in particular, bi-level or multi-level problems help us model this kind of interactions. 
 
It is important to note that strategic behaviour does not only occur in operation but also 
in investment decisions. This is particularly true nowadays because of the shorter 
construction span of generation units (mainly for renewables technologies) and longer 
times for transmission lines (because of stricter environmental restrictions or more 
demanding communities) allow GENCOs to site their units strategically in such a way 
that they induce congestions in the network, leading to higher operational incomes for 
GENCOs. This review aims to present an overview of the current state of GEPTEP models: 
In Section 2.1, the classical network and generation modelling are presented. We update 
the references presented in [3] for co-optimisation models and we extend it to the co-
planning models. In Section 2.2, the properties of co-planning models and their solutions 
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are analysed. As a novelty, we classify hierarchical GEPTEP papers based on their general 
hierarchical structures and sequential decisions.  
 
Therefore, we contribute to the relevant literature by classifying both the hierarchical 
structure and the solution techniques of the co-planning models, offering a direct 
comparative of co-planning models based on consistent parameters. Additionally, we 
describe and classify the most commonly used techniques to solve equilibrium models, 
and we consider the different investment and operation modelling options and their 
impact on both the equilibrium structure and the type of mathematical problem. Lastly, 
in Section 0 we conclude.  

2.1 GEPTEP modelling approaches 

There are two general approaches to GEPTEP modelling. On the one hand, GEPTEP 
models can be used to assess national and regional energy issues (including 
transportation, electricity or gas sectors) to provide guidelines to policy makers. Some 
examples of such policy-oriented models are: MARKAL/TIMES1 [5] , NEMS2 [6] and IPM3 
[7]. More recently, [8] conducted a detailed comparison of US policy analysis models, 
including: [7], [6], [9] and [10]. On the other hand, there are some GEPTEP models focus 
more closely on the electricity sector and, therefore, offer a more detailed 
representation of technical constraints. In this group, the REEDS4 model is worth noting 
[9]–[17], [18]–[23] ,[24]. 
 
When discussing GEPTEP models in general, it is important to understand how they 
represent the complex reality of the decision-making process in mathematical format, 
as modelling simplifications can potentially have a great impact on model results. The 
purpose of this Section is to point out the most important modelling questions in GEPTEP 
models, and to discuss the pros and cons of different modelling approaches. The 
remainder of the Section will discuss what we consider to be the most important 
modelling topics. The representation of the transmission network in GEPTEP models in 
Section 0. The representation of generation investment and operation in GEPTEP models 
in Section 0. How to deal with end effects regarding the temporal horizon in Section 0. 
How to reduce the model size by employing size reduction techniques to the network 
and the time horizon in Section 0; and finally, how deal with the most recent 
developments in the field, with the representation of storage and renewable 
technologies along with the uncertainty GEPTEP models in Section 0.  
 

                                                      
1 Market Allocation developed by US International Energy Agency.  
2 National Energy Modeling Systems developed by the US Energy Information Administration  
3 Integrated Planning Model by US Environment Protection Agency  
4 Regional Energy Deployment System developed by the National Renewable Energy Laboratory 
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Please note that this discussion is aimed at providing the necessary background on basic modelling issues in the 
GEPTEP realm, which will be fundamental to understand the subsequent analysis of Section 2.2. Let us now 
analyse the modelling topics previously pointed out, and extend the work of [3] by classifying the relevant 
works in the literature according to each modelling category. This classification, as well as an updated list 
of references on co-optimisation models are presented in Table ITable I: Classification of co-optimisation 
models according to their modelling approaches 

. Please note that the same modelling categories are presented in co-planning models, 
however, given that we classify some additional features of co-planning models they are 
presented separately in Table V (see Section 2.2). 

Network Representation 

 
The way the network is represented is a key issue for TEP and, as a consequence, for 
GEPTEP problems. The transmission network is usually represented as a pipeline (the 
most simplified approach), as a DC lossless network (the most used approach) or as an 
AC network (the most accurate approach). In the case of the transportation model (also 
known as transhipment or pipeline), the network is represented by pipelines in which 
the flows can be decided ignoring the physical laws that govern power flows in an 
electrical network. In several long-term models [5], [9], [6] [12], the network is 
represented in such a way because its mathematical formulation is very simple and 
linear. Apart from having an overly simplistic network representation, these models also 
consider continuous transmission investment variables (by disregarding investment 
lumpiness5), which allows them to solve large-scale systems, while remaining under a 
linear formulation. 
 
Conversely, in order to successfully represent the lumpiness of transmission investment, 
binary variables should be used. For instance, authors of [25] claim that a transhipment 
model with binary decisions approximates well real operation. This is shown in [26] by 
comparing a DC model with binary investment variables versus both a DC model with 
continuous investment and a transportation model with discrete investment variables. 
Authors in [26] show that, for a 2%-11% renewable portfolio standard target, 
disregarding lumpiness creates more distortion than disregarding a DC network 
approximation. However, given that a lossless DC approximation would be a better 
approximation (while still maintaining linearity), it is found that most of the existing 
detailed transmission planning models implement it. Additionally, we can also find TEP 
models that consider DC network losses [27], however they have not been applied to 
mathematical-based GEPTEP problems. In particular, some heuristics models such as 
[28] have considered DC losses in their planning frameworks. 
 
Finally, the AC power flow is the most accurate representation of the network, even 
though it includes highly nonlinear constraints that yield more complicated models such 

                                                      
5 Lumpiness of investments refers to the discrete nature of the investment decisions, for instance, half transmission line 
cannot be built 
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as MINLPs. Some linear approximations have been applied to the AC-TEP problem. 
Authors in [29] and [30], propose a non-scalable linear approximation that reaches a 
global optimum under certain conditions.  
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Table I: Classification of co-optimisation models according to their modelling approaches 

                                                      
*6 Energy balance or hydro storage is simplified 
7 Simplified storage operation 
8 Load levels are considered as scenarios 

9 It is done with and ex-post probabilistic simulation. 
10 Comercial softwares with flexible input data 
11 Eastern Interconection 

References 
 

[4] 
[5], [7] [9] 

[11] [12] 
[13] 

[14] [16][17]1 [18] [19] [20] [21] [22] [23] [24] [25] 

Year  2012 2009 2012 2016 2012 2016 2011 2018/19 2015 2018 2014 2017 2013 2018 2017 2017 

Network 
Represent. 

Model 

Pipe line  X X  X X          X 

DC X   X   X  X X X X X X   

AC        X       X  

Network 
Investment 

Binary X   X X X X X X X X X X X X  

Integer                X 

Continuous  X X              

Generation 
Investment 

Binary X  X X X X X X X X X  X X X  

Continuous  X          X    X 

End Effect 

Rec./Pres Value        X    X  X X   

Annual. Value X X X X X X  X X X  X   X  

Extended Period                 X 

Time 
Represent. 

Load Level. X  X X X X X X X X X  X X X X 

Represent. 
Periods 

 X          X     

Dynamicity Static X  X   X X X X X X   X X X 

 Dynamic  X  X X       X X    

Storage 
Modelling 

Short Term X X X  X*6    X   X X* X*   

Long Term  X7 X*  X         X  X 

 None    X  X X X  X X    X  

Uncertainty 
Deterministic X X X X X X  X  X8  X  X X X 

Probabilistic        
 

   X  X9    

 Stochastic        X1 X        

Test System   Brazil-
46 Flex10 Flex Zonal-5 WECC 

50 EI-25 Garver-
6 

IEEE- 
24 

IEEE- 
14 

IEEE-
118 

IEEE-
118 

IEEE- 
24 

IEEE- 
118 

Chile- 
27 

IEEE- 
118 

EI11- 
24 
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Additionally, authors in [31] propose a piece-wise linear approximation that proves 
global optimality for small instances, but only feasibility for large instances. Some other 
techniques have been developed, such as Second Order Cone Programming (SOCP) and 
Semidefinite Programming, that formulate convex approximations for the AC power 
flow [32],[33]. In fact, [16], [17] and [24] propose an AC GEPTEP co-optimisation problem 
including a second order relaxation of the AC power flow. 
 
Authors in [24] and [16] show that CPU time decreases up to 10 times compared to the 
traditional mixed integer conic programming. It is important to note that AC formulation 
makes possible to integrate FACTs[24] technology in the co-optimisation problems by 
assessing the load shedding caused by reactive power [17]. We would like to emphasize 
that all the manuscripts reviewed on GEPTEP co-planning (see ) consider a DC power 
flow network representation (which implies that the only difference between co-
planning models is whether transmission investment is binary or continuous). In 
particular, in [34] the application of an AC power flow for a bi-level model in the context 
of TSO-DSO coordination is implemented. This framework can be used as reference for 
future research on how to represent the AC network in the co-planning context. 

Generation Representation 

 
The aspect of the representation of generation and generation expansion that interests 
us here is the use of binary or discrete variables. While using discrete variables instead 
of continuous ones might represent reality more accurately in many cases (i.e., 
investment decisions, start-up/shut-down decisions), it also greatly impacts the 
computational complexity of the resulting GEPTEP model. In general, the representation 
of unit commitment constraints is not included in GEPTEP problems mainly due to CPU 
limitations. To the best of our knowledge only [21] has considered a detailed UC 
formulation. Additionally, in terms of investment decisions, generation expansion can 
be modelled either as continuous variables [7] and [26] integer variables like the 
approach followed by [13], [25] and [14], or as binary decisions like in [22]-[35]. The 
alternative of using continuous variables instead of binary variables decreases the 
search space and computation time, but it reduces model accuracy. However, given that 
economies of scale in generation are much lower than in transmission investment, 
generation lumpiness can be sometimes disregarded. Therefore, under certain 
circumstances, the binary generation investment variables can be relaxed [36] and 
finally adopt different rated capacities for each generator and achieve accurate results. 
More recently, some reliability models have been developed to tackle units’ availability. 
These models are solved either by optimisation [20],[19] or by meta-heuristics [37][26]. 

End Effect 
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As a consequence of computational limitations, the planning horizon for GEPTEP models 
is usually lower than the real lifetime of generation and transmission assets. 
Consequently, in GEPTEP models, the value in use of the investments can be usually 
distorted at the end of the planning periods. Therefore, modelling investment recovery 
is a key point in generation and transmission expansion planning approaches. This issue 
can be solved by including recovery values for the assets at the end of the study horizon 
as shown in [38]. Additionally, an extended simulation can be run as shown in [25], 
where authors consider a 40 years horizon by duplicating the results of the first 20 years 
of operation.  
 
The annualised value of investments can be implemented to internalise the value of 
money over time, as shown in [18]. For a multiyear model, the annual value of 
investments contemplates not only the value of money, but also the optimal building 
time of the facilities, (as opposed to static approaches). All these approaches have some 
pros and cons, as shown in [39]; either choice represents a trade-off between the CPU 
time and accuracy. However, among the papers reviewed here (see Table I), modelling 
an annualised value is by far the most used option, because it easily introduces the value 
of money over time in the whole optimisation horizon.  

 
Finally, it is important to note the mathematical-based algorithms usually consider a 
single target year because they are not suitable for large-scale problems. Consequently, 
most of the work done for multi-year programming has been tackled with some 
alternative metaheuristics algorithms [28]. However, recent advances in computational 
speed, by properly considering the most relevant assumptions, has allowed to tackle the 
multistage programming as seen in [21], making possible to determine not only the 
optimal siting, but also the optimal time of construction of the investments. Additionally, 
the advancements in algorithms to represent uncertainty, that also consider large scale 
problems (see Section 0), have also permitted to tackle the multistage programming 
[40]. 

Size Reduction Techniques  

 
Long-term models have to deal with the trade-off between the representation of short-
term operation constraints and the representation of long-term investment decisions. 
This implies that hourly operating constraints cannot be retained for several years in a 
large system because the model becomes computationally intractable. This concern has 
increased because of the high penetration of renewable technologies, that make the 
impact of ramping constraints, and the capability of storage technologies to balance 
them, more relevant.  
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Consequently, current research is focused on reducing either the network size or the 
time steps representation. The actual transmission network can be reduced so that an 
equivalent resulting network renders the same or approximate solution. Some of these 
techniques [41]–[44] have been applied only for TEP problems. On the other hand, time-
steps can be reduced by, for example, using load levels or representative days. As seen 
in Table II , most of the models used a traditional load level approach and only few of 
them used a representative periods approach.  

In general, detailed clustering approaches for time reduction [45]–[48] are proposed for 
GEP problems when intraday constraints are needed to be modelled, as in the case of 
battery operation. However, only some of these techniques have been applied to 
GEPTEP problems. For instance, authors in [23] applied a load level approach with a 
square-mean-error clustering technique in a GEPTEP problem with batteries 
deployment. Additionally, they characterise wind and solar availability profiles of each 
hour before clustering load levels, but they disregard transitions between clusters. Some 
of these techniques have been applied to GEPTEP co-planning problems, as it will be 
discussed in 0. 

Most recent developments 

 
The major recent developments in GEPTEP have been the introduction of renewables 
generation, which brings along a high uncertainty in renewables resources, and the 
utilisation of storage technologies that help manage the intermittency introduced by 
renewables. 

Uncertainty Representation 

There are multiple sources of uncertainty for GEPTEP problems; some of them are long-
term uncertainties such as climate variables (i.e. hydro seasons), fuel availability, and 
demand growth; some are short term, such as: daily weather for renewables, units 
availability, daily demand, and transmission capacity factor. The representation of 
uncertainty was initially approached by probabilistic methods, in which the availability 
of either generation units or lines is simulated to take into account reliability measures 
[14], [20]. Later, stochastic programming has been considered in a few cases [21],[17] 
applied to the traditional co-optimisation model. Finally, other techniques such as 
robust optimisation have appeared, mainly applied to co-planning models in a market 
environment context, as will be discussed in Section 0. 

Storage Modelling 

Co-optimisation of transmission and storage investments can be found most notably in 
[21] and [18] both studies achieve a lower cost system compared to a separate 
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optimization. Energy Storage Systems (ESS) sizing and siting optimisation are also 
presented in [49] and [50]. Authors in [49] demonstrates that the conditions of siting are 
dependent on the type of ESS technology; [50] concludes that a minimum profit 
constraint should be included in order to guarantee recovery of investment. 
Additionally, authors in [4] show that investment in ESS reduces transmission 
investment costs. In [51], authors consider ESS and a DC transmission losses 
approximation, the conclusion is that ESS reduce transmission costs and add flexibility 
to the system. The general inference of the previous studies is that ESS are a substitute 
of transmission, however, authors in [23] show that ESS can also be complementary to 
transmission, depending on the system characteristics and the level of distribution of 
the ESS deployment. 

Modelling Approaches Gaps  

Authors in [8] research the challenges for renewables generation modelling in 
policy analysis models, and compare results for a US study case. They conclude that 
active areas for modelling enhancement are i) spatial and temporal resolution, ii) 
resource adequacy, and iii) economics of energy production. Additionally, lower times 
of constructions for renewable generation (wind, solar), and longer construction time 
for transmission allow GENCOs to exercise more market power in response to 
transmission siting, making the analysis of strategic decisions more relevant. Finally, 
considering strategic reactive power in the co-planning problem could help reduce load 
shedding and overall cost of the system, through joint allocation of transmission lines, 
conventional units, and reactive power sources [17]. 

2.2 Co-planning equilibrium models 

 
In this Section, we present a literature review on equilibrium co-planning GEPTEP 
models (as opposed to co-optimisation models) with a particular focus on multi-level 
models. We will consider four different categories in the analysis of co-planning GEPTEP 
models: equilibrium structure, regulatory framework, solution techniques, and the most 
recent development on modelling of storage and uncertainty in a market environment. 
We will provide a detailed literature review and a classification of the existing 
equilibrium GEPTEP models, as well as the individual discussion on each category. In 
Section 0, we classify the different GEPTEP co-planning models depending on their 
equilibrium structure. In order to do so, we first introduce market-only (no investment) 
equilibrium models, as they usually constitute the lower level of multi-level co-planning 
models. We then present the possible different structures of equilibrium models and we 
classify co-planning models accordingly. 
 

In Section 0, we examine the possible regulatory frameworks where co-planning GEPTEP 
models are applied, and the corresponding hierarchy of decisions and degree of 
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competition considered. Section 0 explores the most common solutions techniques for 
hierarchical equilibrium models and classifies the literature in the corresponding 
categories. Finally, Section 0 contains a review of storage and uncertainty approaches 
under a co-planning market framework. Figure 1 summarises the properties of GEPTEP 
co-planning models explored in the whole Section 2.2. 

Equilibrium Structure  

 When discussing the equilibrium structure of GEPTEP models, several different cases 
have to be considered, as depicted in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: General Mathematical Structure of Equilibrium Models 

The first distinction is whether the nature of the game is simultaneous or sequential. 
Simultaneous games, are equilibrium structures where all decision variables are 
assumed to be taken simultaneously, i.e., TEP investment, GEP investment, and market 
operating decisions happen all at once. In a sequential or hierarchical structure, one set 
of decisions is taken before the other in a Stackelberg manner. Section 0 introduces 
simultaneous equilibrium models, both market and co-planning. In Section 0 we 
continue with sequential equilibrium markets and conclude with the characterisation of 
sequential co-planning models. 
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Simultaneous One-Level Structure 

We present simultaneous market models, to then cite some simultaneous co-planning 
models, despite the latter being scarce in the literature (given that co-planning models 
are usually more interesting when studying the sequence between investment and 
operation decisions).  

Simultaneous Market Models 

There exists a wide range of research on simultaneous equilibrium models that simulate 
the electricity market functioning, mainly to represent oligopolistic behaviour among 
decentralised GENCOs. In this sense, the following modelling approaches are usually 
studied: a) Perfect Competition: no market power, b) Cournot: firms decide on quantity, 
c) Bertrand: firms decide on price, d) Conjectural variations: a generalisation that, over 
a “conjecture”, can result in models a) & b), and e) Supply Function Equilibrium (SFE): 
firms decide a price-quantity bid. A description of simultaneous equilibrium models 
applied to electricity markets when network is disregarded, is shown in [52]. 
Additionally, a review of Oligopolistic Network-Constrained Models (ONCM) is 
presented in [53]. The seminal paper on ONCMs by Hashimoto [54] introduces the 
network equilibrium model to study systematically the oligopolistic behaviour of 
producers in a simplified transportation network. Under this framework, we identify two 
decisions makers: GENCOs and ISO (or TSO). It is important to distinguish the two main 
features that affect the way prices are created in ONCMs (please refer to Table III for 
the summary): 
 
a) GENCOs reaction to transmission prices. As shown in [55], even if generation 
operation is competitive, GENCOs can exercise market power if transmission rights are 
passive. As an alternative, authors in [55] propose a parallel market for transmission 
rights that affects generators bids and leads to optimal pricing. Subsequently, in [56] and 
[57], the authors consider two different ways for modelling transmission prices, stamp 
(uniform) and marginal prices. This is obtained by considering that GENCOs react a la 
Cournot to transmission prices. Authors claim that multiple equilibria can arise under 
stamp pricing; while uniqueness can only be guaranteed for marginal.  
 
b) Nodal Price Difference: A concern with previous models [55]–[57] is that difference in 
nodal prices might not necessarily be explained by GENCOs marginal costs. [58] 
proposes adding an arbitrager to the network. With this in mind, [58] proposes solving 
the bilateral market with a quadratic optimisation problem (that copes with large scale 
systems). Under this framework, GENCOs compete a la Cournot; while they react to 
transmission prices a la Bertrand (GENCOs cannot affect transmission prices). Author in 
[58] also shows that a bilateral market with an arbitrager is equivalent to a POOLCO 
market (where players react a la Cournot to transmission prices).  
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Simultaneous Co-planning Models 

As mentioned before, our search only found two papers that deal with simultaneous co-
planning models. On one hand, authors in [56], model both transmission and generation 
expansion planning. However, computation limitation at the time of publication prevent 
the study of a real size model. Additionally, in [35] authors formulate an equilibrium 
model to study the strategic interactions between TRANSCOs and GENCOs; then they 
transform the resulting Mixed Complementarity Problem (MCP) to a Quadratic 
Programming Problem (QPP), allowing them to solve big size problems. While a 
simultaneous decision-making structure leads to simpler models, it is also a 
simplification of reality, that can potentially lead to a distortion of optimal planning 
results. 

Hierarchical Multi-level Structure 

Contrary to simultaneous games, sequential games model a decision-making 
hierarchy a la Stackelberg [59].  

 
Table II: Classification of hierarchical multilevel models 

 
Leaders Followers 

OLOF ONE ONE 
OLMF ONE MULTIPLE 
MLOF MULTIPLE ONE 
MLMF MULTIPLE MULTIPLE 

 
Stackelberg [59] simulates a market with a leading firm and multiple followers. This 
game is defined as an equilibrium, where the decisions of the leader are made 
considering the best reaction of the followers that, simultaneously, make their decisions 
knowing how the leader would react anticipating their own decisions. In this sense, bi-
level programming generalises the Stackelberg model by extending the number of 
players (and the type of decisions) in the game. Table II classifies these models following 
[60]. It is important to note that the different levels in a multi-level framework can be 
either represented by different actors (e.g. TRANSCO, System Operator or GENCOs) or 
by different types of decisions (e.g. investment and operation). As mentioned in Section 
0, the market is generally considered as a simultaneous game, where GENCOs and 
System Operator decisions are taken. Nevertheless, other models consider a sequence 
between the decisions of GENCOs and the clearing process made by the System 
Operator. These models are called “Hierarchical Market Models”, and some of their 
properties will be discussed because they are relevant for the subsequent review of 
hierarchical GEPTEP models. 
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Hierarchical Market Models 

In Table III, the main characteristics of simultaneous OCNMs (see in 0) and 
hierarchical OCNMs (as an alternative to improve transmission pricing) are presented. 
In this respect, authors in [61] extend the work on simultaneous OCNM done in 
[58].They propose a sequential Stackelberg model where GENCOs anticipate the TSO 
decisions (leader). The main contribution of [61] is to demonstrate that their proposal is 
a generalisation of [58]. Additionally, [62] makes a comparison of three large-scale 
hierarchical market models. The authors in [62] makes a comparison of the model 
COMPETES [63], Cambridge I, II [64] and the Madrid model [65].  
 

Table III: Oligopolistic Network-Constrained Market Models Characteristics 

 
 
SIM: Simultaneous SEQ = Sequential. TP = Transmission Price. ABP= Arbitraged Payments 
(nodal price x traded quantities).  
 
Authors in [62] find that, when perfect competition is considered, production and 
pricing results are the same for all models. However, when oligopolistic competition is 
considered, pricing results might highly differ; prices could be twice as much in one case 
compared to others. Therefore, whenever a GEPTEP model is analysed, a strong 
emphasis must be made on how the market is represented, given that the resulting 
prices can highly affect investment decisions. 

Hierarchical GEPTEP Models 

In this sub-Section and the following Sections (0, 0, 0 and 0), we characterise co-planning 
equilibrium models.  (next page) summarizes this information. 

 
TSO/ISO* 

Objective Function 
GENCO 

Objective Function 
Reaction to prices Arbitrage Structure 

[55] Maximise: Social 
Welfare 

Maximise: Profits – TP Cournot NO SIM 

[56] i)Min: Investment Cost 
ii) Fixed Rule 

Maximise: 
Profits – TP 

Cournot NO SIM 

[57]  Fixed Rule Maximise: Profits Bertrand NO SIM 
[58] Maximise: Congestion 

Rents 
Maximise: Profits – TP- ABP  Bertrand BOTH SIM 

[66] Maximise: 
Social Welfare 

i) Max: Profit +Nodal 
Premium 

ii) Anticipate 

i) Bertrand 
ii) Stackelberg 

NO i) SIM 
ii) SEQ 

 
[61] 

Maximise 
Congestion Rents + ABP 

Maximise: 
Profits – TP- ABP 

i) Cournot  
ii) Stackelberg 

YES 
 

i) SIM 
ii) SEQ 

[64]  Maximise: Social 
Welfare 

Maximise: Profits – TP Stackelberg YES SEQ 

[65] Maximise: Utility Maximise: Benefits Stackelberg  NO SEQ 
 

[67] 
Maximise 

Congestion Rents + ABP 
Maximise: 

Profits 
i) Bertrand 

ii) Stackelberg 
YES i) SIM 

ii) SEQ 



Final report: " Task 2: Long-Term Models for Integration of RE Technologies"  
 

Dec 2020  17 

Bi-level models can represent the sequence between investment and operation 
decisions in either GEP or TEP problems separately. For instance, [38] considers a bi-
level TEP by modelling market competition in the lower level and transmission 
expansion in the upper level. Some other authors develop a bi-level GEP by considering 
either perfect or imperfect competition in the lower level [68]–[71]. In order to properly 
classify and understand the existing hierarchical structure of GEPTEP problems, the 
difference between decisions and decision-makers must be pointed out. 
 
Decision-makers can be typically classified as: GENCOs, TRANSCO(s), and Market 
Operator (MOR). On the other hand, decisions can be classified as: Generation 
Expansion Planning (GEP), Transmission Expansion Planning (TEP) and Market Operation 
(MO). Market Operation could also be split into Market Clearing (MC) and GENCOs 
Operation (GO). In reality, there is an inherent sequence in GEPTEP decision making: 
investment stage before market stage. Now, as we have pointed out previously in Table 
III, there even exist different sequential stages within the market stage. Conceptually, a 
complete GEPTEP model consists of multiple concatenated hierarchical stages; 
however, when decisions are assumed to be simultaneous, they are reduced 
mathematically to one single stage. In the remainder of this Section, and summarised in 
Table IV, we characterise GEPTEP co-planning models according to their conceptual 
sequence and their corresponding mathematical sequence.  
 
In Table IV, we classify the GEPTEP models considering the investment and operation 
decisions hierarchy. To that purpose, Table IV, lists eight (I-VIII) different options, which 
are shown in the column space. The row space of Table IV represents the separate 
mathematical levels of each model. Please note that simultaneous decisions are 
represented in Table IV when decisions appear together in a single level. The simplest 
GEPTEP option, option I, is a single-level equilibrium model, which considers GEP, TEP 
and MO decisions simultaneously. Options II, III, and IV represent bi-level models, in 
which mathematically speaking there are only two levels.  
 
 
 
Table IV: GEPTEP Model Classification Depending on Hierarchical Structure 
(mathematical levels 1-4 versus GEPTEP options I-VIII) 

 
I II III IV V VI VII VIII 

1 GEP 
TEP 
MO 

GEP  TEP  GEP 
TEP 

GEP GEP TEP TEP 

2 / TEP 
MO 

GEP 
MO 

 

MO TEP MO GEP GEP 

3 / / / / MO TEP MO MC 

4 / / / / / / / GO 
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 [35] 
[56] 

/ [72] 
[73] 
[74] 
[75] 
[76] 

[77] 
[78] 
[79] 
[80] 

[81] 
[82] 

[83] [84][85] 
[86][81] 
[87][88] 
[89][90] 
[36][91] 

 

[92] 

 
This means that conceptually speaking two of the three decision levels (GEP, TEP and 
MO) are considered to be taken simultaneously. Options V, VI and VII represent three-
level co-planning models with the following structure: some investments are made in 
the upper level (GEP/TEP) given some other investments in the middle level (TEP/GEP), 
subject to market operation (MO) in the lower level. Finally, model VIII is a four-level 
model with the same structure as the previous three-level models; but also considers 
the market model is itself hierarchical. Additionally, some techniques can be applied to 
reduce the initial three-level model to a two-level structure as shown in [79] and [86].  
 
Anyhow, reduction techniques are applied only for solving purposes, and therefore the 
underlying hierarchical structure remains an MLMF which is much more complex than 
an OLMF structure (when no anticipation of the market and only one leader is 
considered). This fact would imply to have, instead of a mathematical programme with 
equilibrium constraints (MPEC), an equilibrium programme with equilibrium constraints 
(EPEC), whose solution technique is more complex (see Section 0).  
 

Equilibrium Structure Gaps 

In terms of the commented structures of GEPTEP equilibrium models, we can identify 
some issues for potential further research. For instance, in Table III we have identified a 
potential model II that has not been proposed in the literature yet. This model could 
represent an electricity market with generation investment in the upper level and 
merchant transmission investments and operation in the lower level. Additionally, most 
of the research has focused on proactive models (see Table IV) type VII, but a large field 
of research on reactive models type V and VI still remains almost unexplored. Finally, 
the most realistic framework would be similar to structure VIII (four levels), where there 
is a sequence between TEP and GEP, while investments decisions anticipate market 
outcome and, at the same time, market clearing anticipates generation operation (as in 
hierarchical market models). However, this framework is intractable from an equilibrium 
point of view, and therefore iterative algorithms can help to simulate the real operation 
of the market.  
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 Table V: Classification of GEPTEP Co-planning Models 

                                                      
12 Subject to linear decrease in marginal costs. 
13 Simultaneous GEPTEP decisions 
14 GEPTEP in the upper level and Market Operation in the lower level 
15 GEPTEP in the upper level, uncertainty middle level, operation lower level 
16 When several cases are tested only the biggest one has been referenced. 
17 Sequential Quadratic Programing- Linear Complementarity Problem (1st level)  
18 Quadratically Constrained Program 
19 Authors compare NLP, MIQP and MIP approaches. 
20 Holistic Simulation by using Benders and the Lagrange Relaxation.  

 

21 Generation Strategies are enumerated and finally a MIP is solved. 
22 Column Generation and Disjunctive Cutting Plane.  
23 Hybrid algorithm using Diagonalization and Complementarity Reformulation. 
24 Moore Bard Algorithm. 
Acronyms: SW= Social Welfare, CC = Costumer Cost, CP = Consumer Payment, IC = Investment 
Cost, OC= Operation Cost, ERP=Enhanced Representative Periods, CONT= Continuous, LIC= Line 
Investment Cost, GIC= Generation Investment Cost. 

 AUTHORS [86]/[36] [72]/[73]  [35] [78]  [77]/[79] [92] [88]/[90]12/[87] [84] [89] /[91]  [81] [82] [74]/[75] [80]1 , [94]2 , 
[93]1 , [40]2 

PUBLIC. YEAR 2006/2007 2013/2018 2009 2011/2012 2007/2012 2010 2013/14/17 2014 2014/2017 2017 2018 2015/2019 18/17/19/18 

TYPE  OPTIMISTIC OPTIMIST. OPTIMISTIC OPTIMIST. OPTIMISTIC OPTIMISTIC OPTM./PESM. OPTIMISTIC PESSIMISTIC PESSIMISTIC OPTIMIS. OPTIMIST. ROBUST 

NETWORK 
INVESTMENT 

FIX 
INVESTMENT  

BINARY 
NEW LINES 

BINARY 
NEW LINES 

BINARY 
NEW LINES 

BINARY 
NEW LINES 

BINARY 
NEW LINES 

CONT /BINARY 
NEW LINES  

BINARY 
NEW LINES 

BINARY 
NEW LINES 

BINARY EXP. 
/CONT.  

BINARY 
UPGRADES 

CONT./ 
BINARY N.L. 

BINARY 
NEW LINES 

TSO  
OBJECTIVE 
FUNCTION 

Max  
Social Welfare 

Max SW/ 
Max  

PR –IC (FB) 

Max 
PR – IC 
With FB 

Max  
Welfare-IC 

Max 
 Profits/ 

Min CP- IC 

Several  
Planning Criteria 

Min total Cost /MIN 
OC Min-Max 

Min Weighted 
sum CC-GP 

Min  
IC – SW 

Min  
LIC +GIC+OC 

Min  
IC +Exp.OC 

With FB 

Min 
IC+OC 

Min 
IC+OC 

GENERATION 
INVESTMENT 

CONT. CONT. CONT. CONT.  BINARY NG BINARY NG CONT/ BINARY NG BINARY NG CONT BINARY 
EXPANSION 

CONT CONT CONT 

GENCOs 
OBJECTIVE 

Max 
Profit 

Max 
Profit 

Max 
PR-IC 

Max  
Profit 

Max 
PR & CapPay 

Max 
PR-IC 

Max 
Profit 

Max 
Profit 

Max 
Profit  

Max  
Exp PR-IC 

Max  
Exp PR-IC 

Max 
Profit 

__ 

ISO 
OBJECTIVE 

Max Social 
Welfare /RD 

Max Social 
Welfare 

Min 
CP 

Max  
SW 

Min P. Mis. Min 
OC 

Max  
SW 

Min Cost Operation/ Min  
Accep. Bids 

Max Social Welfare MIN  
OC 

Max Social 
Welfare 

Max CR Min 
OC 

DYNAMICITY STATIC STATIC STATIC STATIC STATIC STATIC STATIC Muli-Period STATIC STATIC STATIC STATIC STAT. 1 /DYN 2 
REGULATORY 
FRAMEWORK 

PROACTIVE VS 
REACTIVE 

PROACTIVE OTHER 13 OTHER OTHER 14 PROACTIVE PROACTIVE PROACTIVE PROACTIVE PROACTIVE - 
REACTIVE 

REACTIVE PROACTIVE OTHER 15 

HIERARCHICAL 
STRUCTURE 

MLMF OLMF ONE LEVEL OLMF MLOF/ 
MLMF 

MLMF MLMF MLMF MLMF OLMF/MLOF MLMF OLMF OLMF 

OPERATION 
COMPETITION 

STRATEGIC PERFECT STRATEGIC STRATEGIC STRATEGIC/ 
PERFECT 

STRATEGIC PERFECT PERFECT STRATEGIC PERFECT PERFECT PERFECT/ 
STRATEGIC 

PERFECT 

UNCERTAINTY NO NO NO NO YES NO NO/DEM/GEN NO NO YES NO NO YES 

DEMAND ELASTICITY  ELASTIC INELASTIC INELASTIC ELASTIC ELASTIC/ 
INELASTIC 

INELASTIC INELASTIC INELASTIC ELASTIC INELASTIC INELASTIC ELASTIC INELASTIC 

TIME REPRESENT. 1 HOUR LOAD LEVEL 1 HOUR 1 HOUR LOAD LEVEL LOAD LEVEL BLOCKS 1 HOUR 1 HOUR/ 
BLOCKS 

BLOCKS REPRESEN. 
 PERIODS 

1HOUR/ERP REPRESEN. 
PERIODS 

END EFFECT Annual Annual Annual Annual NPV / Annual NPV  Annual  NPV  Annual  Annual Annual  Annual  Annual 
STORAGE 

REPRESENT. 
NO NO / Short -

Term 
NO NO NO NO NO NO NO NO Short Term Short/Short & 

Long-Term 
NO 

TEST CASES 16 Chilean 32 
/Cornell 30 

IEEE-21 
Garver-6 

IEEE 
14 bus 

6-bus 6-bus/ 
IEEE-118 

5- bus 4-Bus/Chilean 34/24 
Node 

Garver- 6 IEEE-118/ 
 IEEE-14 

IEEE-118 WEEC-240 4-bus 118/Chile 
20/118/118 

SOLUTION 
TECHNIQUE 

LCP-SQP17 MIP QCP18 MIP19 
 

ITERATIVE20 
/MIP 

Iterative Agent 
Based 

MIP21/ CG 22 Kth Best 
Algorithm 

(DM-CP)23/ 
MILP 

MBA24 / MILP MIP/ Iterativ. 
CG 

MIP Column 
Generation 2 
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Regulatory Framework  

From a regulatory point of view, GEPTEP co-planning models can be classified depending 
on the decision maker considered to be the leader (which implies which investment 
decisions are assumed to be taken first). Depending on whether GEP or TEP are 
considered to be first, the regulatory framework can be proactive or a reactive. 
Moreover, co-planning models can also be classified according to the level of 
competition in the market: markets with an oligopolistic structure versus those closer 
to perfect competition, both will be discussed below. 

Proactive versus Reactive Planning Approaches 

A key issue in generation and transmission expansion planning is the choice of which 
investment decision is considered to be taken first. Does the transmission planner take 
its decisions after the generation has been sited or do the generation companies plan 
their investments after transmission assets have been decided? What comes first, the 
chicken or the egg?  
 
These choices are the proactive and reactive transmission planning approaches. Authors 
in [36] propose a proactive planning approach as a framework in which the network 
planner has the ability to influence generation investment and spot market behaviour. 
In terms of the hierarchy, it means that TRANSCO is the leader and the GENCOs that 
anticipate market outputs are the followers.Respectively, under a reactive planning 
approach, the network planner assumes that generation capacities are given, and then 
makes an optimization based only on the spot market equilibrium. Reactive planning is 
thus represented by a model with multi-leaders GENCOs and one or several TRANSCOs 
as followers. Authors in [36] consider an oligopoly structure and demonstrate 
theoretically how proactive planning leads to greater social welfare in comparison to 
reactive planning.  
 

Some alternative approaches are available, like presented in [78] (please see Table IV). 
Here, a two-level model is defined, where the upper level represents the investment 
decisions (both GEP and TEP), while the lower level represents the market operation 
(MO). Authors in [78] additionally consider fuel supply as another investment variable.In 
practice, as mentioned in [25] most of the TRANSCO companies in the world follow a 
reactive approach, and, to the best of our knowledge, no institution has applied a strictly 
proactive approach as the one proposed in [36]. However, as mentioned in [87] there 
are some other approaches that are close to proactive planning. For example, the US 
government approved a regulation includes the concept of anticipative (proactive) 
transmission planning to obtain a higher social welfare [95]. In Chile, a regulation that 
enforces the consideration of coordination between transmission and generation has 



 Final report: " Task 2: Long-Term Models for Integration of RE Technologies" 
 

22  Dec 2020 

also been approved [96]. Additionally, in the current European context, ENTSOE plays 
the role of a centralised agent that proposes future planning pathways, coordinated 
regionally, and then generation companies can react to its decisions. Thus, under this 
regulatory context, a proactive planning approach would make more sense.  

Proactive Planning Approach 

Most of the literature in co-planning equilibrium models for GEPTEP have used a 
proactive planning approach. Proactive planning research can be summarised as follows. 
On one hand, authors in [86] extend the work done in [36]; they analyse different 
objective functions and consider a spot market where the distinctive ownership 
structures are reflected (one GENCO can own several units), as proposed in [66]. Authors 
in [88] extend the theoretical work done in [86] and [36] where the complete multi-level 
model was not solved and only a set of different fixed transmission investment plans 
were evaluated. The work done in [88] proposes the first complete model; however they 
relax the Cournot assumption and consider only perfect competition in the spot market.  
On the other hand, authors in [90] also define three levels and assume perfect 
competition in the market in the lower level, strategic generation expansion in the 
middle level and transmission expansion in the upper level. Compared to [88], [90] adds 
uncertainty in the demand and applies the model to a real-size case study. The same 
authors in [90] extend their work in [87] by proposing a pessimistic and optimistic 
network planner (the pessimistic case is used to eliminate multiple equilibria by 
considering the worst generation expansion case) to describe all possible outcomes of 
the EPEC in the lower level. The authors conclude that in practice, if multiple generation 
expansion exists in the equilibrium, proactive planning does not always yield the best 
welfare results, and it can even reduce social welfare.  
 

 Additionally, [89] extends this approach and proposes a model with Cournot strategic 
decisions in the market. Finally, [92] relaxes the Cournot assumption (in reaction to 
transmission prices) and proposes a two-level approach in the market outcome by 
considering an interaction between ISO market clearing problem and GENCOs optimal 
bidding strategies (please see 0 and Table IV), resulting in a four-level model. This model 
is solved by means of an agent-based methodology.  

Apart from the three-level proactive approach, there are two-level approaches where 
transmission investment decisions are taken first and then generation investment and 
operation decisions are taken simultaneously. On the one hand, the work in [72] models 
the lower level based on the work of [58]. Authors in [72] consider perfect competition 
in the lower level and define different objective functions in the upper level, that are 
compared with a vertically integrated one-level approach. Additionally, they consider a 
network fee so the TRANSCO can recover investments in the case of a flow-based fee 
regulation, typically used in the US. Later, [73] extends the work in [72], choosing a 
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pessimistic TRANSCO and demonstrating some subsequent uniqueness properties, 
battery expansion is also considered in their framework.  

On the other hand, authors in [74] consider a stochastic bi-level model with merchant 
(for details on modelling of merchant TRANSCOs refer to [97] and [98]) investor of 
transmission in the upper level and wind expansion and market operation in the lower 
level, considering Cournot competition. Finally, authors in [75] and [76] apply the same 
structure, but consider storage expansion and Cournot competition in the lower levels. 
Additionally, [76] compares the bi-level model with the traditional an inelastic cost 
minimisation approach. Both works [74], [75] find counterintuitive results when 
considering Cournot competition in the lower level compared to a perfect competition 
case.  

Reactive Planning Approach 

As mentioned above, the reactive planning approach was first proposed in [86], where 
some theoretical properties were shown and some other practical results were 
presented for fixed transmission plans. Unfortunately, subsequent research is limited. 
In general, under this approach, several GENCOs are considered as the leaders, and a 
single TRANSCO as follower. However, it could also be the case that only one GENCO is 
the leader and the rest GENCOs and TRANSCO(s) are followers, this would represent an 
OLMF structure, which, as mentioned above, is simpler to solve.  
 
There are only three subsequent studies on reactive planning. In [81], authors propose 
a new comparison between the proactive and the reactive approach. In contrast to the 
work done by [90], authors in [81] do not consider anticipation of market outcomes by 
GENCOs and propose the elimination of the multiple Nash equilibria by considering a 
pessimistic or optimistic TRANSCO. Additionally, authors in [82] propose a real size 
reactive planning approach in which merchant storage is decided in the Upper Level, 
while transmission investment and market operation are decided in the Middle and 
Lower Level respectively. Authors conclude that the co-planning of storage and 
transmission lead to greater cost savings than an independent storage planning. Authors 
in [83] propose a 4-level with merchant TRANSCOs.  
 
Finally, in terms of transmission modelling, it is important to note that for all proactive 
planning models, capacity expansion of new lines is represented by binary variables, 
while, in reactive planning, line expansions are represented by continuous variables to 
keep the convexity of the lower level, as shown in [81]. However, in [82] transmission 
expansions are represented by binary variables by applying the dual formulation of the 
lower level and using the strong duality condition as it will be discussed in Section 0 
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Perfectly Competitive versus Oligopolistic GEPTEP Approaches 

In the usual proactive planning approach, a centralised TEP and several GENCOs are 
considered. Thus, given the three-level structure of GEPTEP problems (see Section 0); 
there could be strategic decisions either on GENCOs operation decisions or on GENCOs 
investment decisions. As mentioned in 0, the competition between generators in the 
spot market, and their reaction to transmission prices, can be modelled as either 
Cournot, Bertrand or SFE. We will discuss the different approaches found in the 
literature for GEPTEP problems.  

Competitive Market 

Most of the GEPTEP hierarchical models consider perfect competition in the spot market 
(please see Table IV). This simplifies the solution techniques, and more importantly, 
guarantees that under certain conditions, uniqueness of the solution is achieved.  
If perfect competition (both in GENCOs investment and market functioning) and cost 
minimisation objective are considered in both levels, there would not be a difference 
between a proactive bi-level decentralised GEPTEP problem and a centralised vertically 
integrated co-optimisation problem, as shown in [99]. In other words, if the objective 
function of both levels is aligned and a perfectly competitive market is considered, both 
approaches will render the same solution.  

Oligopolistic Market 

As mentioned above, there could be strategic behaviour either in the investment or in 
the generation operation decisions. If only strategic investment decisions are considered 
and no anticipation of the competitive spot market is assumed (simultaneous 
generation and perfectly competitive market operation), the problem will have an MPEC 
structure. However, even in this case, multiple Nash equilibria can arise. As mentioned 
in 0 no anticipation of the spot market is assumed in [72], [81] and [15]. In [73], [81] 
multiple equilibria are eliminated considering a pessimistic TRANSCO approach. 
If only anticipation of the spot market is considered, there might still exist multiple Nash 
equilibria (as pointed out in [90]) given that an EPEC problem would be tackled. As 
mentioned in Section 0, in the context of proactive planning some models consider 
strategic decisions in both investment and operation levels, as shown in [89] and [92] 
(Cournot or SFE). However, they represent a MLMF structure, whose solution method 
does not guarantee a global optimum solution.  

Regulatory Framework Gaps 

In spite of the fact that proactive planning has been proven to lead to the most efficient 
investment and operation results (and most of the research has focused on its analysis), 
in practice, few jurisdictions have strictly applied this approach. Therefore, it is 
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important to compare different regulatory contexts to be able to propose additional 
formulations of the GEPTEP problem for understanding the operation and investment 
strategies in an imperfect market structure. Additionally, the lower construction times 
for generation and the higher constructions times for transmission lines allow GENCOs 
to exercise strategic investment and operation decisions more easily. This scenario 
leaves an open field for future research on novel regulatory structures to model the 
entrance of new merchant GENCOs in the market.  

Solution Techniques 

In this Section, we present the techniques used to solve hierarchical GEPTEP co-planning 
problems. Depending on the initial hierarchical structure (please see Section 0), the 
techniques might be different. Therefore, in order to solve problems with a single leader, 
i.e., an OLOF or OLMF structure, the solution techniques for the arising Mathematical 
Programs with Equilibrium Constraints (MPECs) described in Section 0 are to be used. 
Alternatively, if there are multiple leaders in the upper level, i.e., an MLOF or MLMF 
structure, the techniques explained in 0 to solve Equilibrium Programs with Equilibrium 
Constraints (EPEC) are to be used. 
 

Mathematical Programs with Equilibrium Constraints 

When a bi-level problem is defined as an OLMF game (as defined in Section 0), its 
mathematical structure is seen as an MPEC or as a simple bi-level programming 
problem. As seen in Figure 2, the OLMF is a type of mathematical structure in which a 
single optimisation problem (Upper Level) is constrained by several simultaneous 
optimisation problems (Lower Level) that represent an equilibrium. In Figure 2, 𝑥𝑥 and 𝑦𝑦 
represent lower and upper level decision variables respectively.  
As explained in Section 0, in some cases, this lower-level equilibrium can be converted 
into a single optimisation problem. Nevertheless, even if this is possible, the resulting 
complete problem cannot be solved directly by classical optimisation techniques, 
because an optimisation problem is constrained by another optimisation problem. 

 
𝑀𝑀𝑀𝑀𝑥𝑥 𝐹𝐹(𝑥𝑥, 𝑦𝑦) 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑡𝑡: 

 
𝑀𝑀𝑀𝑀𝑥𝑥 𝑓𝑓(𝑥𝑥1,𝑦𝑦)          𝑀𝑀𝑀𝑀𝑥𝑥 𝑓𝑓(𝑥𝑥2,𝑦𝑦)      …     𝑀𝑀𝑀𝑀𝑥𝑥 𝑓𝑓(𝑥𝑥𝑛𝑛,𝑦𝑦) 

            𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑡𝑡             𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑡𝑡           …      𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑡𝑡  
 

           𝑔𝑔1(𝑥𝑥1,𝑦𝑦) ≤ 0         𝑔𝑔2(𝑥𝑥2,𝑦𝑦) ≤ 0         …     𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛,𝑦𝑦) ≤ 0   
          𝑥𝑥1,𝑦𝑦 ≥ 0                  𝑥𝑥2,𝑦𝑦 ≥ 0           …           𝑥𝑥𝑛𝑛,𝑦𝑦 ≥ 0            
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Therefore, in order to solve a bi-level problem with an OLMF structure, we can follow 
the next steps. First, the set of lower-level optimisation problems can be converted into 
a set of non-linear and non-convex constraints by applying the Karush-Kuhn-Tucker 
(KKT) (if the optimisation problem is convex) conditions. As seen in Figure 3, the resulting 
optimisation problem is constrained by the primal feasibility constraints, the dual 
feasibility constraints and the Complementarity Conditions (CC). 
 
 
 
 
 
 

𝑀𝑀𝑀𝑀𝑥𝑥 𝑦𝑦 𝐹𝐹(𝑥𝑥,𝑦𝑦) 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑡𝑡: 

 
𝜕𝜕𝜕𝜕/𝜕𝜕𝑥𝑥1  = 0        𝜕𝜕𝜕𝜕/𝜕𝜕𝑥𝑥2  = 0       …    𝜕𝜕𝜕𝜕/𝜕𝜕𝑥𝑥𝑛𝑛  = 0 

 
 

𝜆𝜆1𝑔𝑔1(𝑥𝑥1,𝑦𝑦) = 0  𝜆𝜆2𝑔𝑔2(𝑥𝑥2,𝑦𝑦) = 0 … 𝜆𝜆𝑛𝑛𝑔𝑔𝑛𝑛(𝑥𝑥2,𝑦𝑦)  = 0 
 
 

𝑔𝑔1(𝑥𝑥1,𝑦𝑦) ≤ 0      𝑔𝑔2(𝑥𝑥2,𝑦𝑦) ≤ 0 … 𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛,𝑦𝑦) ≤ 0 
𝑥𝑥1,𝑦𝑦 ≥ 0          𝑥𝑥2, 𝑦𝑦 ≥ 0      …    𝑥𝑥𝑛𝑛,𝑦𝑦 ≥ 0 

 
 
 

The resulting set of constraints is non-linear and non-convex, given the complementarity 
conditions of the problem. This lower level has the structure of a Mixed 
Complementarity Problem (MCP), and therefore the whole problem has the structure 
of an MPEC. Please note that bi-level (OLMF) problems are particular cases of MPECs. 
Now we list the most used techniques to solve this kind of problems. As mentioned in 
[100], these techniques can be divided into dedicated (efficient algorithms that ensure 
global optimality but require significant additional coding) and non-dedicated 
algorithms. We explain here the non-dedicated algorithms (that can be implemented 
directly using commercial software): NLP/ MPEC, Regularisation, Penalisation, MIP KKT- 
DUAL. 
 
NLP/MPEC 
The only non-convexity in Figure 3 is the one introduced by the complementarity 
conditions. Therefore, this problem can be solved directly using an ordinary NLP solver. 
However, given that this is a specific NLP structure embedded in an MPEC, specific 

Figure 2: Bi-level problem with an OLMF structure 

Dual 
CC 

Prim
al 

Figure 3: OLMF problem with Lower Level KKT Conditions 
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solvers, such as PATH, that tackle directly this problem more efficiently can be used. 
Unfortunately, both nonlinear and MPEC solvers cannot guarantee a global optimal 
solution to the MPEC, given that all feasible points are non-regular [100], and 
consequently, solution methods can easily get stuck in a local optimum or not even find 
a feasible solution. 
 
Regularisation 
This method [100] relaxes the complementarity condition of the MPEC problem. 
Instead, the set of equations for 𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛,𝑦𝑦) ≤ 𝑆𝑆 are solved. Then the NLP problem for 
small values of 𝑆𝑆 is iteratively solved. The solution of each iteration will be the initial 
point of the following iteration; this process is faster but only provides a local optimum 
point solution for the MPEC. 
 
Penalisation 
The penalisation approach [100] is similar to the regularisation. Conversely, in this case, 
the complementarity conditions are penalised in the objective function by a parameter 
that is reduced along the iterations until a sufficiently small value of the parameter is 
reached. As before, the solution of each iteration will be the initial point of the following 
iteration. 
 
MIP KKT- DUAL 
As an alternative, the non-linear problem described in Figure 3 can be converted into a 
MILP (when the upper level objective function is linear) by linearizing the 
complementarity conditions. This linearisation can be achieved by applying the 
methodology proposed by Fortuny-Amat in [101] or by the discretisation method 
proposed in [102]. In the first case, a disjunctive formulation is applied to transform 
complementarity constraints into binary constraints. This is done by splitting the original 
constraint into two disjunctive constraints limited by a large enough parameter. This is 
usually known as the Big M constraints.  
 
This method is, by far, the most used method to solve bi-level problems. However, most 
of the papers that use it do not explicitly mention a method to determine the Big-M 
values. In fact, as mentioned in [103] if these values are small, suboptimal solutions can 
appear, and conversely, too large Big-Ms can lead to numerical issues (when different 
variable magnitudes are reflected in dual variables), such as unstable solutions or large 
execution times. In [100], a method is proposed to define Big M values by mixing the 
regularisation and KKT-MIP previously commented methods. Authors show that this 
method is more efficient computationally speaking and it reaches the optimal solution 
in more cases compared to other methods. This method is proposed for linear bi-level 
problems; but it seems to be also efficient for convex problems in general.  
 
Additionally, instead of applying the whole set of KKT conditions, the complementarity 
conditions can be replaced by the strong-duality conditions (where the objective 
function of the dual problem equals the objective function of the primal problem), which 
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together with its primal and dual feasibility conditions, leads to an equivalent primal-
dual formulation. In [104] a comparison of the KKT and the primal-dual formulation is 
presented and applied to a vulnerability analysis of the power system. The authors find 
that the primal-dual approach is more efficient because the size of the problem is highly 
reduced. This is the result of the lower number of Big Ms (alternatively index constraints 
or SOS1 variables can be used to programme disjunctive constraints[105].) needed to 
linearise the strong duality conditions compared to those needed to linearise the 
complementarity conditions (it depends on the ratio #variables / #constraints).  

Equilibrium Problem with Equilibrium Constraints 

In case of structures with multiple leaders and one follower or multiple followers, it will 
be more difficult to solve the resulting problem, given that the resulting formulation 
consists of several optimisation problems (equilibrium) subject to several optimisation 
problems (equilibrium). This problem can be seen as a collection of several MPECs. As 
shown in [60], in order to solve this problem, the following techniques are available: a) 
Diagonalisation algorithms, the MPEC of every agent is solved sequentially one after the 
other. b) Simultaneous solution method, all problems are solved simultaneously by 
defining the strong stationary condition c) System of inequalities with equilibrium 
constraints, used when the problem has finite strategies.  
 
Unfortunately, the solution of multilevel equilibrium problems can only be guaranteed 
for the case of OLMF models (MPECs). For MLOF and MLMF (EPECs) problems, there is 
no guarantee of the existence of the equilibrium. As mentioned in [60], there is still a 
lack of understanding of the existence of EPECs solutions, thus, only simulation models 
and approximation algorithms are applied. Additionally, we can have hybrid methods as 
the one level reformulation of bi-level games. In this case, the lower level is reformulated 
by its equivalent KKT conditions and then it is inserted into every optimisation problem 
in the upper level. Then the KKT conditions of the whole problem are formulated and 
solved again. However, the resulting solution might not be an optimum. Ex-post 
validation should be carried out to verify its optimality. An example of this approach can 
be found in [91]. 
 
Albeit the difficulty of solving these mathematical structures, in the literature there are 
several models that tackle more than two levels, by trying to reduce the multi-level 
problems into a two or one level equivalent problem. For instance, authors in [92] 
propose a coordination framework to take into account the reaction from GENCOs by 
adopting generation expansion decisions within a four level problem. They solve the 
coordination problem iteratively using agent-based modelling and a search-based 
optimisation technique. In [106] they further extend the model and develop an iterative 
process by simulating the interaction between TRANSCOs and the ISO and they propose 
a multi leader – multi follower agent based model. They consider both several 
TRANSCOs and GENCOs. Additionally, we can find an EPEC problem when only one 
TRANSCO is considered in the upper level and multiple investing GENCOs in the middle 
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level to anticipate the market outcome of the lower level. In this case the middle and 
lower level result in a MLMF structure and thus an EPEC formulation is solved as 
presented in [90]. 
 
 Finally, it is important to note that, in most co-planning models, generation expansion 
is modelled as a continuous variable, as shown in [25], [85], [35] and [88]. This 
assumption responds to the need to obtain convexity conditions in the lower levels, and 
implies that (in most cases) only repowering of existing units is represented. 
Alternatively, other authors represent the expansion decisions with integer variables, as 
[13], [79] and [84], but in these cases only the GEP model is solved for new wind 
generators. Finally, to the best of our knowledge, only [81] and [87] consider binary 
variables in both investment levels of the GEPTEP problem, which yields non-convex sub 
problems that can only be solved by using complex algorithms such as Column 
generation (CG) or the Moore Bard Algorithm. Authors in [87] propose a CG and cutting 
plane algorithm to solve a three-level proactive problem. The CB algorithm is close to 
the usual diagonalisation technique, but it considers a master problem that creates a 
meaningful solution to the sub problem that is solved by a diagonalisation-like 
procedure. This algorithm guarantees a global solution and efficient computation times.  

Solution Technique Gaps 

In the case of MPEC problems, there is still an active field of research for finding efficient 
methods to solve these optimisation problems. As mentioned before in [103], Big M is 
the most common technique to solve the one-level reformulation of bi-level programs. 
However, small values of Big Ms can lead to suboptimal solutions and large constants 
can lead to numerical issues (if different orders of magnitude are present in the dual 
variables of the lower level). Additionally, some authors have tackled the consideration 
of binary variables in the lower level but all the solutions imply the implementation of 
complex dedicated algorithms [81], [82], [87]. Finally, even though some progress has 
been done in the resolution of EPECs [87] there is even more space for research in this 
area, given that its application to real size cases is still an immature area of knowledge.  

Most recent developments 

 
In this Section, we introduce the most recent research on co-planning equilibrium 
models. This research focuses on modelling the detailed operation of storage 
technologies and on representing renewable uncertainty using novel hierarchical 
structures. 
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Representation of Storage in GEPTEP Co-planning Models 

Only [81] is the only study that considers long-term hydro storage in equilibrium models, 
but a simplified version that does not consider reservoir management. To the authors’ 
knowledge, two reviewed papers have addressed short-term storage modelling in 
GEPTEP co-planning models.  
On the one hand, authors in [73] consider storage expansion and perfect competition in 
the spot market simultaneously formulated in the lower level. Authors in [73] show that 
adequate storage investment can reduce line investment cost of the TSO. They also 
show that investment in a zonal market can be suboptimal compared to a nodal market.  
On the other hand, in [82] investment in merchant storage resources is considered in 
the upper level. The authors use a representative period approach to simulate the time 
steps in which the period of study is divided. Authors demonstrate that merchant 
storage is economically feasible under the case study considered.  
More recently, authors in [75] propose a co-planning model that includes Cournot 
competition in the market and the representation of short-term (batteries) and long-
term (hydro) storage resources with a representative-period formulation that includes 
a transition matrix and cluster indices as proposed in [45]. Additionally, authors in [75] 
find counterintuitive results when a proactive approach is considered with Cournot 
competition in the market. 

Representation of Uncertainty in Investment and Operating Decisions 

Given the complexity of GEPTEP hierarchical models, most of the papers reviewed do 
not consider the modelling of uncertainty (as seen in ) in their formulations. Accordingly, 
given that the correct implementation of renewables depends mainly on the 
introduction of the uncertain availability of the resources, renewables25 are usually not 
included in detail in these models.  
As mentioned in Section 0, probabilistic and stochastic approaches were the most 
common way to represent uncertainty For instance, [79] considers a stochastic 
approach with scenarios for wind levels and demand. However, it considers traditional 
load blocks and therefore it is not suitable for adequately simulating storage operation. 
Authors in [79] study how different wind subsidies schemes affect the total welfare of 
the system. They conclude that transmission investments highly conditions the 
investment in wind. They consider different hydro seasons, limiting the maximum 
energy produced at each season, and consider a Weibull distribution to introduce 
stochasticity in wind speed that limits the maximum generation capacity of each wind 
unit. They also consider a load block approach. Recent developments in uncertainty 
representations have introduced other techniques such as robust optimisation, mainly 

                                                      
25 Additionally, determining support schemes is an important field of research that has not been assessed 
by GEPTEP models but has been assessed separately in bi-level GEP and network constrained GEP [125], 
[126]. 
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by the application of Adaptive Robust Optimisation (ARO), which has proved to be 
computational efficient and to represent properly the long-term uncertainties [40]. 
 
In this sense the most recent work on robust GEPTEP considers a Min-Max-Min 
approach in which simultaneous GEP and TEP decision are taken in the upper level, 
uncertainty realisation in the middle level and operation in the lower level [40], [93]. In 
particular [80] considers stochastic programming and robust optimisation to deal with 
both long- and short-term uncertainties. Finally, some other authors additionally 
consider a certain type of reliability criteria [94] and [107]. Please note that the 
computation efficiency of the algorithms used to solve robust problems have permitted 
to consider multistage dynamic planning approaches, which had been previously of 
limited application [40], [93]. 
 
A different approach for representing uncertainty is presented in [87]. Authors 
introduce uncertainty in generation investment, by using similar techniques to those 
used in robust optimisation. Therefore, authors in [87] take into account the possible 
multiple generation investment equilibria resulting from a hierarchical model (see 
Section 21). Therefore, instead of considering the parameters as the uncertainty set, the 
authors consider the multiple investment equilibria (resulting from the middle level) as 
their uncertainty set.  
 
It is important to highlight the recent prolific research in robust optimisation. The 
theoretical background to solve robust optimisation problems is close to the dual theory 
and the techniques used to solve hierarchical models. However, in hierarchical models, 
the levels considered represent either different agents or decisions. Conversely, in 
robust optimisation, the levels considered typically represent different instances of 
uncertainty realisation. For instance, in [80], both the GEP and TEP expansion decisions 
are made in the second level where the worst operational case is simulated and in the 
third level corrective measures are taken to minimise operational costs. This robust 
optimisation framework can be an important field of research that, together with 
stochastic programming, is able to couple long and short-term uncertainties in capacity 
expansion planning 

Gaps in Storage and Uncertainty Modelling Approaches  

Renewable uncertainty and storage operation are still wide fields of research in co-
planning equilibrium models. Given the properties of equilibrium models, there is an 
interesting field of research to study and compare extreme competition cases, where 
the uncertainty can come not only from the fuel and sources availability but also on the 
multiple equilibria that can arise from imperfect competition. Additionally, detailed time 
representation and novel solution techniques can permit us to model more complex 
markets.  
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Concluding remarks 

In this paper we addressed the GEPTEP problem. First we considered the GEPTEP co-
optimisation problem in a centralised environment in which a vertically integrated utility 
takes investment and operation decisions. Then, we focused on the GEPTEP co-planning 
problem in market environment, where strategic behaviour and sequential decisions of 
decentralised agents was studied.  

The main findings of this literature review are twofold: 

i) Given the usual tractability trade-off in planning problems it is difficult to determine 
the best modelling options to represent GEPTEP problems, however we found that: a) 
in general, considering lumpy transmission investments might be more important than 
representing a detailed network. b) in contrast, given that the economies of scale in 
generation investment are much lower than in transmission investment, lumpy 
generation investment can be sometimes disregarded. c) Finally, as shown by [108], a 
thorough uncertainty representation can be more important than representing 
generation operating constraints in a detailed manner. 

ii) For the case of GEPTEP co-planning problems in a market environment, we found that 
it is a very useful framework to model more realistic market structures. In general, the 
most studied proactive approach, which renders a higher welfare, is still not spread 
around countries. We found, that even if there is perfect competition in the operation, 
considering the strategic sequential investment decisions between transmission and 
generation can highly change the planning results. Additionally, the consideration of 
merchant investors helps to give insights on how to define optimal support schemes. 
Finally, some counterintuitive results arise when considering imperfect competition in 
the market operation, i.e., under Cournot competition, allowing trade between areas 
(by building more lines) can decrease total welfare [74], [75], [86].  

We found the following gaps in the literature: 

i) Modelling Approaches: There is an active field of research on spatial and temporal 
resolution, resource adequacy and economics of energy production. ii) Equilibrium 
structure: Most of the equilibrium structures studied, consider a two, three or even four 
level traditional proactive approach, however, some proactive structures and most 
reactive structures remain unexplored. iii) Regulatory Structure: In spite of the fact that 
proactive planning has been proven to lead to the most efficient investment and 
operation results, in practice, few jurisdictions have strictly applied this approach. 
Therefore, it is important to compare different regulatory contexts in order to 
understand optimal operation and investment strategies in imperfect markets. iv) 
Solution Technique: In the case of MPEC problems, there is still an active field of 
research for finding efficient and standard methods to solve these equilibrium problems. 
Additionally, even though some progress has been achieved in the resolution of EPECs, 
there is even more space for research in this area, given that its application to real-size 
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cases is still an immature area of knowledge. v) Most recent developments: Renewable 
uncertainty and storage operation are still wide fields of research in co-planning 
equilibrium models. On the one hand, more studies on the complementarity between 
transmission and storage investment are necessary, as well as the joint consideration of 
both short term and long term storage. On the other hand, given the properties of 
equilibrium models, there is an interesting field of research to study and compare 
extreme competition cases, where the uncertainty can come not only from the fuel 
prices and the availability of generating units, but also from the multiple equilibria that 
can arise from imperfect competition. Finally, given that perfect information is a strong 
assumption, including imperfect information theory in the GEPTEP problems can make 
these models more useful for real applications.  

 

3 Transmission- and generation-expansion planning under 
perfect competition 

This task develops a mathematical model to capture the transmission-expansion 
planning currently in use by TSOs. Such models work under the assumption of a perfectly 
competitive market and, hence, resolve to a cost-minimisation approach. We will build 
such a model as a benchmark for comparison with the equilibrium model in this task. By 
undertaking this task in close collaboration with our partner TSO, we acquire invaluable 
technical information on how decisions are currently being taken and what are the main 
decision-analytic features to take into account in transmission-expansion models. 
 
 

3.1 Deterministic Transmission and Generation Expansion 
Planning 

In this report, we develop the mathematical formulation of the co-optimization problem 
between of the Generation Expansion Planning and Transmission Expansion Planning 
(GEPTEP), each of which has been widely addressed (in a separated way) in the 
literature. Hence, in this report we are going to formulate a cost minimization 
deterministic GEPTEP, which is meant to serve as a benchmark for a future bi-level 
GEPTEP model. The motivation for the development of a bi-level model is to have a tool 
that allows us to understand more deeply the strategic interactions between agents in 
the liberalized market.  

In terms of co-optimization problems, in [3] we find a wide literature review on GEPTEP 
models. It includes a large classification which goes from a time resolution to network 
representation classification. At a first stage, we are going to include the main 
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operations constraints which might be relaxed or simplified according with size or time 
resolution representation.  

 

Notation 

This Section contains the main notation used in the models presented in this document. 

Sets 

𝑦𝑦 ∈ 𝑌𝑌 year  
𝑝𝑝 ∈ 𝑃𝑃 periods 

𝑟𝑟𝑝𝑝 ∈ 𝑅𝑅𝑃𝑃  representative periods  
Γ𝑟𝑟𝑟𝑟,𝑟𝑟 set of correspondence between 𝑟𝑟𝑝𝑝 and 𝑝𝑝 

𝑝𝑝 final period 
𝑑𝑑 ∈ 𝐷𝐷 nodes 
𝑔𝑔 ∈ 𝐺𝐺  generator unit g 
𝑆𝑆(𝑔𝑔) ∈ 𝑇𝑇 thermal units 
ℎ(𝑔𝑔)  ∈ 𝐻𝐻 storage units 
ℎ𝑓𝑓(ℎ)  ∈ 𝐻𝐻𝐹𝐹 short-term storage units 
ℎ𝑠𝑠(ℎ) ∈ 𝐻𝐻𝑆𝑆 long-term storage units 
𝐺𝐺𝐺𝐺𝐷𝐷(𝑔𝑔,𝑑𝑑) set of all possible g located at node d 
𝐺𝐺𝐺𝐺𝐷𝐷(𝑔𝑔,𝑑𝑑) set of existing g located at node d 
𝐺𝐺𝐺𝐺𝐷𝐷(𝑔𝑔,𝑑𝑑) set of candidate g located at node d 
𝜕𝜕𝐺𝐺(𝑑𝑑,𝑑𝑑′) set of all possible lines from node d to d’ 

𝜕𝜕𝐺𝐺(𝑑𝑑,𝑑𝑑′) set of existing lines from node d to d’ 
𝜕𝜕𝐺𝐺(𝑑𝑑,𝑑𝑑′) set of candidate lines from node d to d’ 

𝐻𝐻𝑝𝑝𝑝𝑝′ Univocal correspondence between period p and p’ ∈ Γ𝑟𝑟𝑟𝑟,𝑟𝑟 

 

Parameters 

𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔  
𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔  

Maximum capacity of technology 𝑔𝑔 
Minimum capacity of technology 𝑔𝑔  

MW 
MW 

𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑑𝑑𝑑𝑑′ Maximum flow in line dd’ MW 
𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑′ Reactance of line dd’ [p.u] 

𝑝𝑝𝐹𝐹𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑡𝑡 Fuel cost of technology 𝑆𝑆 €/MWh 
𝑝𝑝𝐹𝐹𝑝𝑝𝑥𝑥𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑡𝑡  Fix operation cost of thermal generator 𝑆𝑆 € 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑔𝑔  Annualized investment cost 𝑔𝑔  €  

𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑡𝑡 Startup cost of thermal generator 𝑆𝑆 € 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑑𝑑𝑑𝑑′ Annualized investment cost of line dd’ € 

𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦𝑟𝑟𝑑𝑑  Demand Intercept at year y period 𝑝𝑝 at node 𝑑𝑑 MW 
𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑡𝑡𝑝𝑝𝑆𝑆 Demand Slope  €/MW 
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𝑝𝑝𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑦𝑦ℎ  Efficiency of storage unit h  [p.u] 
𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝐹𝐹𝑆𝑆𝑆𝑆ℎ  Production Function of h [p.u] 
𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑡𝑡𝑝𝑝𝑟𝑟ℎ  Energy inflows for period p storage h MWh 
𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝ℎ  
𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝ℎ 

Max/Min reservoir level of storage unit h  MW 

𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐺𝐺𝑡𝑡𝑝𝑝𝑠𝑠ℎ  Maximum consumption of storage unit ℎ MW 
𝑀𝑀 Time window h 

𝑝𝑝𝐺𝐺𝑅𝑅𝑆𝑆𝑡𝑡  CO2 emission rate of technology 𝑆𝑆 CO2/MWh 
𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟 Weight of each representative day [p.u] 
𝑝𝑝𝑆𝑆𝑝𝑝 Base Power  MW 

𝑁𝑁𝑅𝑅𝑃𝑃𝑟𝑟𝑟𝑟,𝑟𝑟𝑟𝑟′ Number of periods from rp to rp’ [p.u] 
EFOR Expected Forced Outrage [p.u] 
𝑝𝑝𝑝𝑝𝑝𝑝𝜕𝜕𝐺𝐺 Value of lost energy €/ MW 

 

Variables 

 
𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑  Production at year 𝑦𝑦 period 𝑝𝑝 of generator 𝑔𝑔 at node d MW 
𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑  Investment status at year 𝑦𝑦 of generation unit g at node 

d  
{0,1} 

𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′ Investment status at year 𝑦𝑦 of line connecting node 𝑑𝑑 to 
𝑑𝑑′ 

{0,1} 

𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ Flows at year 𝑦𝑦 at period 𝑝𝑝  from node d to d’  MW 
𝑝𝑝𝑝𝑝𝐺𝐺𝑦𝑦𝑟𝑟𝑡𝑡𝑑𝑑  Commitment status of unit t in node d at period p {0,1} 

vStartUp𝑦𝑦𝑟𝑟𝑡𝑡𝑑𝑑  Start status at year y period p of the thermal generator 𝑆𝑆 
at node d 

{0,1}/MW 

𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑟𝑟𝑑𝑑  Voltage angle at year y period p node d  p.u. 
𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦𝑟𝑟𝑑𝑑  Demand at year y period 𝑝𝑝 at node 𝑑𝑑 MW 
𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑  Level at year 𝑦𝑦 period 𝑝𝑝 of storage unit h at node 𝑑𝑑  MW 

𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑  Consumption at year 𝑦𝑦 period 𝑝𝑝 of storage unit h at node 
𝑑𝑑 

MW 

𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑  Spillage at year 𝑦𝑦 period 𝑝𝑝 of storage unit h at node 𝑑𝑑 MW 

 

Model Description  

In general, in most of real-size models, intertemporal restrictions such as ramping or 
spinning reserves are excluded from the model, and a detailed hydro system is usually 
neglected. Thus, we formulate a model with the same characteristics based mainly on 
the Star Net model, adding generation expansion constraints and including some 
additional simplifications. 

Additionally, given that there exists a tradeoff between representing in detail the 
operation of the system and executing a long-term model with a representative amount 
of years, we use a representative’s day framework. It has been established in [45] the 
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importance of a correct representation of short-term operation for long-term decisions. 
In particular, authors in [45] show that this is especially true for storage technologies 
which can operate both in short (batteries) and long (hydro) term. Thus, authors in [45] 
present a thoughtful comparison of the available time representation modeling 
frameworks and apply them to a storage investment model. As a result, [45] proposes a 
representative-period model with transition matrix and cluster indices. This framework 
is an extension of the usual representative days, by considering transitions between 
representative periods to be able to model inter-period constraints rather than only 
intra-period constraints. In this report, we will follow this approach to represent time, 
slow and fast storage constraints. 

Finally, three different types of models are formulated to give account of the tradeoff 
between a detailed representation in operation and a relaxed considerations of such 
constraints. Accordingly, the increase in the size of the models depend mainly on the 
inclusion of integer variables. In this GEPTEP model there are four set of integer variables 
that might increase the complexity of the problem: investment decision in lines and 
generators, unit commitment variables and start-up of thermal generators. 

 As mentioned before, this model is meant to serve as a benchmark for a bi-level model 
in which usually TEP represents the upper level. This condition allows us to have discrete 
transmission investment decisions and, as a consequence, we will consider them binary 
in our three models. On the other hand, we can remove or relax the discrete decisions 
related to generation expansion and operation. Therefore, we define 3 distinctive 
models: 1) Complete: this model considers all possible binary decisions in the model, 
investment, unit commitment and star-up.  2) Relaxed Model: this model keeps the unit 
commitment and generation investment decisions but the variables are considered 
continuous instead of binary. 3) Simplified Model: in this case we exclude unit 
commitment operation decisions and we relax investment decisions.     
 

Table 6: Models Description 

 
 Simplified  Complete Relaxed 
Type of problem MIP MIP MIP 
Objective Function Equation ( 2 ) Equation ( 1 ) Relaxed O.F 
Operation  ( 3 )-( 5 ), (13)- ( 16 ) ( 3 ), ( 6 ) -  ( 16 ) ( 3 ),( 6 )-  ( 16 ) 
Unit Commitment 
Start-Up Shut-Down  

Not Included Binary Decisions Continuous 
Decisions 

Generation 
Investment 

Binary Decisions Binary Decisions Continuous 
Decisions 

Network Investment Binary Decisions Binary Decisions Binary Decisions 
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Objective Function 

Our Objective Function (O.F) is a cost minimization function which includes investments 
costs, fixed and variable operation costs and CO2 emission costs. For each year, we have 
a discount factor that allows us to compare financial flows at the base year. Additionally 
to cost minimization problems we can find reliability considerations. For instance [14] 
proposes an iterative algorithm to solve the GEPTEP taking into account the network 
reliability at each of the iterations. Nevertheless, we can introduce global reliability 
measures as the Energy Non- Served (ENS).  

An additional concern is how to treat the end effect of the optimization, this refers to 
how to consider the last period of the optimization and the terminal conditions of the 
temporal constraints. For instance, we can solve this issue by including recovery values 
for the assets as shown in [38]. With this procedure, we can internalize additional 
information in the model to make more accurate decisions for investment times and to 
remove distortion of endless operating investments. On the other hand, we can run an 
extended simulation or have a fixed finishing criterion. For instance [25] uses 40 year 
horizon, which means replicating 20 years and taking only the result of first 20 operating 
years.  For the moment we apply a fixed finishing criterion.  

From now on, we will define some of the equations including Unit Commitment 
Constraints (UCC) and some other excluding them. From now on index p refers hours 
belonging to the representative days 𝑃𝑃𝑀𝑀 = �𝑝𝑝|𝑝𝑝 ∈ Γ𝑟𝑟𝑟𝑟,𝑟𝑟� 

Objective Funtion including UCC 

 𝑇𝑇𝑡𝑡𝑆𝑆𝑀𝑀𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆 =    �(𝑌𝑌 − 𝑦𝑦 + 1) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑔𝑔   ∗ � 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑  −   𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦−1,𝑔𝑔𝑑𝑑�
𝑦𝑦𝑔𝑔𝑑𝑑

+  � (𝑌𝑌 − 𝑦𝑦 + 1) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑑𝑑𝑑𝑑′ ∗ �𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′ − 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦−1,𝑑𝑑𝑑𝑑′�
𝑦𝑦𝑑𝑑𝑑𝑑′

+ � 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟 ∗ 𝑝𝑝𝐹𝐹𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑡𝑡 ∗ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑡𝑡𝑑𝑑
𝑦𝑦,(𝑟𝑟,𝑟𝑟𝑟𝑟)∈Γ𝑟𝑟𝑟𝑟,𝑟𝑟,𝑡𝑡,𝑑𝑑

 

+ � 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟 ∗ 𝑝𝑝𝐹𝐹𝑝𝑝𝑥𝑥𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑡𝑡 ∗ 𝑝𝑝𝑝𝑝𝐺𝐺𝑦𝑦𝑟𝑟𝑡𝑡𝑑𝑑 ∗
𝑦𝑦,(𝑟𝑟,𝑟𝑟𝑟𝑟)∈Γ𝑟𝑟𝑟𝑟,𝑟𝑟,𝑡𝑡,𝑑𝑑

𝐷𝐷𝑦𝑦           

+ � 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟 ∗ 𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑡𝑡 ∗ 𝑝𝑝𝑆𝑆𝑆𝑆𝑀𝑀𝑟𝑟𝑆𝑆𝑝𝑝𝑝𝑝𝑦𝑦𝑟𝑟𝑡𝑡𝑑𝑑
𝑦𝑦,(𝑟𝑟,𝑟𝑟𝑟𝑟)∈Γ𝑟𝑟𝑟𝑟,𝑟𝑟,𝑡𝑡,𝑑𝑑

∗ 𝐷𝐷𝑦𝑦     

+ � 𝑝𝑝𝐺𝐺𝑅𝑅𝑆𝑆𝑡𝑡 ∗ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑡𝑡𝑑𝑑 ∗ 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟 ∗ 𝑝𝑝𝐺𝐺𝑝𝑝2𝑝𝑝𝑟𝑟𝑝𝑝𝑆𝑆𝑆𝑆
𝑦𝑦,(𝑟𝑟,𝑟𝑟𝑟𝑟)∈Γ𝑟𝑟𝑟𝑟,𝑟𝑟,𝑡𝑡,𝑑𝑑

∗ 𝐷𝐷𝑦𝑦           

+ � � 𝑝𝑝𝐺𝐺𝑁𝑁𝑆𝑆𝑦𝑦𝑟𝑟𝑑𝑑 ∗ 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟 ∗ 𝐷𝐷𝑦𝑦
𝑦𝑦,(𝑟𝑟,𝑟𝑟𝑟𝑟)∈Γ𝑟𝑟𝑟𝑟,𝑟𝑟,𝑔𝑔,𝑑𝑑

� ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝜕𝜕𝐺𝐺 

 

 

 

 

 

( 1 ) 

O.F excluding UCC 
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𝑀𝑀𝑝𝑝𝑝𝑝 𝑇𝑇𝑡𝑡𝑆𝑆𝑀𝑀𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆 =    𝑀𝑀𝑝𝑝𝑝𝑝 𝑇𝑇𝑡𝑡𝑆𝑆𝑀𝑀𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆
=    � (𝑌𝑌 − 𝑦𝑦 + 1) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑔𝑔   ∗ � 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑  −   𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦−1,𝑔𝑔𝑑𝑑�

𝑦𝑦,(𝑔𝑔,𝑑𝑑)∈𝐺𝐺𝐺𝐺𝐺𝐺

+  � (𝑌𝑌 − 𝑦𝑦 + 1) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑑𝑑𝑑𝑑′ ∗ �𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′ − 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦−1,𝑑𝑑𝑑𝑑′�
𝑦𝑦(𝑑𝑑,𝑑𝑑′)∈𝐿𝐿𝐺𝐺

 

+ � 𝑝𝑝𝐺𝐺𝑅𝑅𝑆𝑆𝑡𝑡 ∗ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑡𝑡𝑑𝑑 ∗ 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟 ∗ 𝑝𝑝𝐺𝐺𝑝𝑝2𝑝𝑝𝑟𝑟𝑝𝑝𝑆𝑆𝑆𝑆
𝑦𝑦,(𝑟𝑟,𝑟𝑟𝑟𝑟)∈Γ𝑟𝑟𝑟𝑟,𝑟𝑟,𝑡𝑡,𝑑𝑑

∗ 𝐷𝐷𝑦𝑦           

+ � � 𝑝𝑝𝐺𝐺𝑁𝑁𝑆𝑆𝑦𝑦𝑟𝑟𝑑𝑑 ∗ 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟 ∗ 𝐷𝐷𝑦𝑦
𝑦𝑦,(𝑟𝑟,𝑟𝑟𝑟𝑟)∈Γ𝑟𝑟𝑟𝑟,𝑟𝑟,𝑡𝑡,𝑑𝑑

� ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝜕𝜕𝐺𝐺 

 

 

 

( 2 ) 

Where D is the discount rate 

𝐷𝐷𝑦𝑦 =
1

(1 − 𝑑𝑑)𝑦𝑦 

For the case with UCC we consider a unique type of plant with fixed production capacity 
per type of generator. However, we can add a binary variable to specify different 
capacity levels per technology as described in [79]. 

Constraints  

We now describe the set of constraints to be included in the GEPTEP formulation, as in 
the O.F case we will have two alternative formulations depending on whether the 
constraint is affected by the unit commitment or not.  

Power Balancing Constraint 

We consider the power balance at each node of the system.  

� 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑
𝑔𝑔𝑔𝑔𝐺𝐺𝑔𝑔𝐺𝐺

+ 𝑝𝑝𝐺𝐺𝑁𝑁𝑆𝑆𝑦𝑦𝑟𝑟𝑑𝑑 + � 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′
𝑑𝑑′𝑔𝑔𝐿𝐿𝑔𝑔

− � 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑′𝑑𝑑
𝑑𝑑′𝑔𝑔𝐿𝐿𝑔𝑔

+ �
𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑

𝑝𝑝𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑦𝑦ℎ𝑔𝑔𝐺𝐺𝑔𝑔𝐺𝐺𝑑𝑑′𝑔𝑔𝐿𝐿𝑔𝑔
= 𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦𝑟𝑟𝑑𝑑        

 

 

( 3 ) 

Capacity Constraint  

In the initial prototype we model the unavailability of the units as a fixed historical 
proportion of the total capacity (EFOR). In some cases, the nonscheduled maintenances 
can be simulated in order to introduce some uncertainty in the model.  For instance [22] 
uses a Monte Carlo approach to model the generation outages and [14] uses a minimum 
load curtailment algorithm  together with ELOL and LOLP measures.  
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Excluding UCC 

Existing units 
0 ≤ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 ≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔 ∗ 𝐺𝐺𝐹𝐹𝑝𝑝𝑅𝑅    ∀𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷,∀𝑦𝑦𝑝𝑝𝑑𝑑   ( 4 ) 

New Units  
0 ≤  𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 ≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔 ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑 ∗ 𝐺𝐺𝐹𝐹𝑝𝑝𝑅𝑅     ∀𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷,∀𝑦𝑦𝑝𝑝𝑑𝑑 ( 5 ) 

 
 

Including UCC 

Existing Units 
 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 ≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔 ∗ 𝑝𝑝𝑝𝑝𝐺𝐺𝑦𝑦𝑟𝑟𝑡𝑡𝑑𝑑 ∗ 𝐺𝐺𝐹𝐹𝑝𝑝𝑅𝑅  ∀𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷,∀𝑦𝑦𝑝𝑝𝑑𝑑   ( 6 ) 

�𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑡𝑡 ∗ 𝑝𝑝𝑝𝑝𝐺𝐺𝑦𝑦𝑟𝑟𝑡𝑡𝑑𝑑� ∗ 𝐺𝐺𝐹𝐹𝑝𝑝𝑅𝑅 ≤ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑡𝑡𝑦𝑦𝑡𝑡𝑡𝑡𝑑𝑑  ∀𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷,∀𝑦𝑦𝑝𝑝𝑑𝑑 ( 7 ) 

 

New Units 

𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 ≤ [𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑡𝑡 ∗ (𝑝𝑝𝑝𝑝𝐺𝐺𝑦𝑦𝑟𝑟𝑡𝑡𝑑𝑑 + �1 − 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑡𝑡𝑑𝑑�𝑡𝑡∈𝑔𝑔𝑔𝑔𝑑𝑑)] ∗  𝐺𝐺𝐹𝐹𝑝𝑝𝑅𝑅   ∀𝑔𝑔
∈ 𝐺𝐺𝐺𝐺𝐷𝐷,∀𝑦𝑦𝑝𝑝𝑑𝑑 

 

( 8 ) 

𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 ≤ �𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔�𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑�� ∗ 𝐺𝐺𝐹𝐹𝑝𝑝𝑅𝑅 ∀𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷,∀𝑦𝑦𝑝𝑝𝑑𝑑 ( 9 ) 

�𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑡𝑡 ∗ 𝑝𝑝𝑝𝑝𝐺𝐺𝑡𝑡𝑦𝑦𝑡𝑡𝑡𝑡 − �1 − 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑡𝑡𝑦𝑦�� ∗ 𝐺𝐺𝐹𝐹𝑝𝑝𝑅𝑅 ≤ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑡𝑡𝑦𝑦𝑡𝑡𝑡𝑡 ∀𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷,∀𝑦𝑦𝑝𝑝𝑑𝑑 ( 10 ) 

 

The representation of generation expansion is a key feature that differentiates the 
various GEPTEP approaches. In some cases, mainly when an equilibrium model is 
tackled, the generation expansion is modeled as a continuous variable, as shown in 
[25],[85],[35] and [88]. This consideration responds to the need of convexity conditions 
in the lower levels for multi-level approaches, and additionally implies that we only 
represent repowering of existing units. On the other hand, some others authors 
represent the decisions with integer variables, as [13], [79] and [84] in which only 
expansion in wind generation is included. 

With the previous remarks we propose two ways of representing generation expansion 
for new units.  

a) Excluding UCC. In equation ( 5 )  we can limit the power capacity of a new generator 
depending on whether it is installed or not.  
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b) Including UCC: In equations ( 8 ) , ( 9 ) and ( 10 ) we limit power capacity considering 
the commitment of the units. These equations are the result of the linearization of the 
product between the commitment and investments status variables. We use the big M 
approach to attain such a result. In the case of the minimum production ( 10 ) we need 
only one constraint in contrast to maximum capacity where we need both  ( 8 ) , ( 9 ). 

Commitment, startup logic of thermal units  

 
  𝑝𝑝𝑝𝑝𝐺𝐺𝑡𝑡𝑦𝑦𝑟𝑟 − 𝑝𝑝𝑝𝑝𝐺𝐺𝑡𝑡𝑦𝑦𝑟𝑟−1 < 𝑝𝑝𝑆𝑆𝑝𝑝𝑡𝑡𝑦𝑦𝑟𝑟 ∀𝑆𝑆 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷, ∀𝑦𝑦𝑝𝑝 ( 11 ) 

𝑝𝑝𝑝𝑝𝐺𝐺𝑦𝑦𝑡𝑡𝑟𝑟′ = 𝑝𝑝𝑝𝑝𝐺𝐺𝑦𝑦𝑡𝑡𝑟𝑟(𝑟𝑟,𝑟𝑟𝑟𝑟) ∀𝑆𝑆 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷,∀𝑦𝑦,∀(𝑝𝑝, 𝑟𝑟𝑝𝑝), 𝑟𝑟𝑝𝑝′| 𝑁𝑁𝑅𝑅𝑃𝑃𝑟𝑟𝑟𝑟,𝑟𝑟𝑟𝑟′  > 0 ( 12 ) 

Where 𝑝𝑝′ = 𝑝𝑝𝑓𝑓(𝑝𝑝′, 𝑟𝑟𝑝𝑝′) + 𝑁𝑁𝑃𝑃𝑟𝑟𝑟𝑟−1,𝑡𝑡 𝑀𝑀𝑝𝑝𝑑𝑑 𝑝𝑝𝑓𝑓 𝑝𝑝𝑠𝑠 𝑆𝑆ℎ𝑆𝑆 𝑝𝑝𝑀𝑀𝑠𝑠𝑆𝑆 ℎ𝑡𝑡𝑆𝑆𝑟𝑟 𝑡𝑡𝑓𝑓 𝑟𝑟𝑝𝑝 

 

The unit commitment constraint ( 11 ) tell us that if a unit is not committed in time t and 
then it is committed in time t+1, then the unit has to be started. Additionally, equation 
( 12 ) is the condition to represent the connection between representative days, it states 
that the last hour of a representative period has to be equal to the first hour of the 
following representative period.  

Storage Constraints 

 

Equations (13) and  (14) represent the storage balance conditions as proposed in [109]. 
Equation (13) represents short-term storage i.e. batteries, when only intraday operation 
is considered. Equation (14) is considered jointly with equation (13) when long-term 
storage i.e. hydro is modeled. Therefore, for long-term storage, reservoir management 
is followed up across the entire year, as opposed to the rest of constraints in which only 
intraday operations are included. While the detailed formulation and explanation of this 
representation of storage is presented in [23], we briefly explain it here for clarity. 

The reservoir energy balance is verified for a given time window. For instance, if a 168h 
window is chosen, the reservoir balance equation (14) will be verified at the end of every 
week. This balance the sum of production, consumption and spillage from the reservoir 
during the whole week. Note that not all 8760 hours are solved; only a number of hours 
belonging to a set of representative days are chosen. Please note that in equation (14), 
Γ𝑟𝑟𝑟𝑟,𝑟𝑟 indicates which hours of the year correspond to the chosen representative days, 
while 𝐻𝐻(𝑝𝑝′,𝑝𝑝) maps each hour of the year to its corresponding hour in the appropriate 
representative day.  
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In hydro storage we will have two types of units, regular units in which inflows to the 
reservoir are only parameters (𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑡𝑡𝑝𝑝) and pumping units in which we have both 
parameters and decision variables inputs such as consumption(𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝) .  

𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑓𝑓𝑑𝑑 = 𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦,𝑟𝑟−1,ℎ,𝑑𝑑 + 𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦=1,𝑟𝑟=1,ℎ,𝑑𝑑 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑓𝑓𝑑𝑑 − 𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑓𝑓𝑑𝑑

−  
𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟′′ℎ𝑓𝑓𝑑𝑑
𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑓𝑓𝑆𝑆𝑆𝑆ℎ𝑓𝑓

+
𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑓𝑓𝑑𝑑
𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑓𝑓𝑆𝑆𝑆𝑆ℎ𝑓𝑓

        ∀ℎ𝑓𝑓 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷, 𝑝𝑝 < 𝑝𝑝𝑓𝑓,   ∀𝑦𝑦𝑝𝑝ℎ𝑑𝑑, 

 

 

(13) 
 

𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑 = 𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦,𝑟𝑟−𝑀𝑀,ℎ,𝑑𝑑 + 𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦=0,𝑟𝑟=1,ℎ,𝑑𝑑

+ � ��𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑 − 𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑 −  
𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟′′ℎ𝑑𝑑
𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑓𝑓𝑆𝑆𝑆𝑆ℎ

+
𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑
𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑓𝑓𝑆𝑆𝑆𝑆ℎ

�
𝑟𝑟′′

𝑟𝑟

𝑟𝑟′

∶ 𝜓𝜓′
𝑦𝑦𝑟𝑟ℎ𝑑𝑑           ∀ℎ ∈ 𝐺𝐺𝐺𝐺𝐷𝐷, 𝑝𝑝 < 𝑝𝑝𝑓𝑓,   ∀𝑦𝑦𝑑𝑑,   

 𝑝𝑝𝑝𝑝𝑆𝑆ℎ 𝑝𝑝` = 𝑝𝑝 −𝑀𝑀 + 1 𝑀𝑀𝑝𝑝𝑑𝑑 𝑝𝑝 ∈ 𝑃𝑃𝑠𝑠, 𝑝𝑝′′ ∈ 𝐻𝐻(𝑝𝑝′, 𝑝𝑝′′)𝑃𝑃𝑠𝑠 = �𝑝𝑝𝑠𝑠|
𝑝𝑝𝑠𝑠
𝑀𝑀 ∈ 𝑍𝑍+� 

 

 

(14) 

 

We will not consider a detailed hydrological topology. However, this can be easily 
generalized in a straightforward way. Finally, to differentiate between hydro reservoirs 
and batteries we set 𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑡𝑡𝑝𝑝 values to 0 in the case of batteries.  The variable 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑 
refers to discharges in batteries and energy production in hydro units, as well as 𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝 means 
pumping consumption in hydro units and charging decisions in batteries.    In equations ( 15 ) 
and ( 16 ) we set the boundaries on the storage level and consumption, which might represent 
volume of reservoir or capacity of batteries.  

𝑀𝑀𝑝𝑝𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝ℎ ≤ 𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝 ≤ 𝑀𝑀𝑀𝑀𝑥𝑥𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝ℎ  ∀ℎ ∈ 𝐺𝐺𝐺𝐺𝐷𝐷,∀𝑦𝑦𝑝𝑝𝑑𝑑 
 

( 15 ) 

0 ≤
𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑

𝑝𝑝𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑦𝑦ℎ
≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐺𝐺𝑡𝑡𝑝𝑝𝑠𝑠ℎ        ∀ℎ ∈ 𝐺𝐺𝐺𝐺𝐷𝐷,∀𝑦𝑦𝑝𝑝𝑑𝑑 

 

( 16 ) 

Network Modeling 

Hereafter we describe the two main types of network modeling used in the literature. 
They choice of the alternative depends on a tradeoff between a detailed representation 
of the network and the computational tractability. We finally chose to model our 
network with a DC approach. 

 Transportation Model 

In the case of the transportation model (also known as transshipment or pipeline), the 
network is seen as a pipeline in which flows can be decided regardless voltage 
limitations. In several long-term commercial models the network is represented in this 
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way. Some of these are: Markal [5], ReEds [9], LIMES [15] or SWICTH [12]. These models 
consider continuous investment variables to in order to reach the representation of 
bigger systems. This approach allows them to remain within linear programming, at the 
expense of a simplified network representation. On the other hand, [25] uses discrete 
line investment decisions together with the transshipment model. This choice is 
supported by [25] in two ways a)  they conclude that a transshipment model with binary 
decisions approximates well to a DC power flow model with binary investment decisions. 
b) For the specific US case consider in [25],  a zonal model is studied in which voltage 
laws can be depreciated as a consequence of recurrent local loops in the network .  

 As a consequence, for the case of existing lines we will have the following formulation:  

𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′ ≥ 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ ≥ −𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′             ∀(𝑑𝑑,𝑑𝑑′) ∈ 𝜕𝜕𝐺𝐺,∀𝑦𝑦𝑝𝑝  
( 17 ) 

On the other hand, for the case of candidates lines we have the following formulation:  

𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ ≥ −𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′ ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′        ∀(𝑑𝑑,𝑑𝑑′) ∈ 𝜕𝜕𝐺𝐺,∀𝑦𝑦𝑝𝑝 
( 18 ) 

−𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ ≥ −�  𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′ ∗  𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′    �       ∀(𝑑𝑑,𝑑𝑑′)  ∈ 𝜕𝜕𝐺𝐺,∀𝑦𝑦𝑝𝑝 
( 19 ) 

 DC linearized Model 

In the DC linearized model, we add to the transportation model the limitation on 
voltages.  

For existing lines:  

𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ = 𝑝𝑝𝑆𝑆𝑝𝑝 ∗
𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑟𝑟𝑑𝑑 − 𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆ℎ𝑀𝑀𝑦𝑦𝑟𝑟𝑑𝑑′

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑′
             ∀(𝑑𝑑,𝑑𝑑′) ∈ 𝜕𝜕𝐺𝐺,∀𝑦𝑦𝑝𝑝   

( 20 ) 

For candidate lines: 

Regarding the expansion of the network we might find two distinctive approaches. We 
can include expansion only for new lines or repowering of existing lines by the addition 
of circuits into an interface. After applying the Big M approach, as in the case of 
generation expansion planning, we get as a result, equations  

( 21 ) and  

 

( 22 ) in which 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝 is the upper bound for the capacity of the transmission lines. 
In other words, 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝 is used as the value for Big M. 
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−𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ ≥ �−𝑝𝑝𝑆𝑆𝑝𝑝 ∗
𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑟𝑟𝑑𝑑 − 𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆ℎ𝑀𝑀𝑦𝑦𝑟𝑟𝑑𝑑′

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑′

− 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′�1 − 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′��  ∀(𝑑𝑑,𝑑𝑑′)  ∈ 𝜕𝜕𝐺𝐺,∀𝑦𝑦𝑝𝑝  

 

( 21 ) 

 

𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ ≥ �𝑝𝑝𝑆𝑆𝑝𝑝 ∗
𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑟𝑟𝑑𝑑 − 𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆ℎ𝑀𝑀𝑦𝑦𝑟𝑟𝑑𝑑′

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑′

− 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′�1 − 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′��  ∀(𝑑𝑑,𝑑𝑑′)  ∈ 𝜕𝜕𝐺𝐺,∀𝑦𝑦𝑝𝑝  

 

 

( 22 ) 

Reference angle 

In order to solve the previous equations we need to have a reference angle.  

𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑟𝑟𝑑𝑑∗ = 0 
( 23 ) 

Integer constraint  

 

𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦−1,𝑑𝑑𝑑𝑑′ ≤ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′  ∀(𝑑𝑑,𝑑𝑑′) ∈ 𝜕𝜕𝐺𝐺 ∀𝑦𝑦  
( 24 ) 

 

−𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦−1,𝑔𝑔𝑑𝑑 + 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑 ≥ 0    ∀𝑦𝑦𝑔𝑔𝑑𝑑 
( 25 ) 

 

Constraint ( 24 ) and  ( 25 ) tells us that once a line or generator is invested it will be 
operational in the rest of the planning horizon. As mentioned before, this constraint can 
be stricter if we chose to include a recovery value from assets. However, constraint ( 24 
) and ( 25 ) would hold  if we finally simulate a planning horizon longer than investments 
life time.  

As for the case of generation expansion, in transmission expansion we can model the 
investments decision either as integer variables like the approach followed by [14] , [25], 
[13] or binary decisions as done in [22], [84],[85],[35] and TEPES model. The decision on 
the utilization of binary variables instead of integer decreases the search space and 
computation time.  
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Case Study 

Data 

Figure 4 shows the system considered in the case study. The system consists of 9 lines, 
all with a total transmission capacity of 800 MW. There is demand in all nodes and 
existing generation in nodes 1-4 and 6 (see Table VII). There are three candidate lines 
and two candidate generators (represented with dotted lines), their characteristics can 
be seen in Table VIII and Table IX respectively. Additionally, for this study case, 4 
representative days (24 hours each) are chosen, a window of 168 h is selected and the model is 
run for a 1-year horizon. 

 

 

 

 

 

 

 

 

 
Table VII: Existing Generation 

Node Technology Max Capacity (MW) Fuel Cost (€/MWh) 
1 Nuclear 771.6 15 
1 CCGT4 667.1 24 
1 ImportedCoal_Bituminous 194.4 44 
1 FuelOilGas 441.8 120 
2 DomesticCoal_Anthracite 588 48 
2 OCGT1 400 67.5 
2 CCGT1 500 42 
3 BrownLignite 203 50.92 
3 CCGT2 500 45 
3 OCGT2 400 70.5 
4 ImportedCoal_SubBituminous 150.4 49.14 
4 CCGT_3 500 48 
4 OCGT_3 400 73.5 

Figure 4: Network 
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Table VIII: Candidate Lines 

 

From Node To Node Reactance [p.u] Total Investment Cost (M€) Capacity 
(MW) 

4 9 0.07 7.5 800 

3 5 0.03 7.5 800 

6 7 0.06 7.5 800 
 

Table IX: Candidate Generators 

 

Results 

Table X shows the resulting capacity expansion in transmission lines for each one of the 
models. As we can see, the transmission expansion is the same for all models, this 
suggests that, depending on the network configuration, the transmission decisions 
might not change when unit commitment decisions are relaxed or neglected.  

 

 Table X: Transmission Expansion 

 

 Lines Invested  Capacity (MW) Annual Inv Cost (M€) 

COMPLETE (9-4) (6-7)  1600 15 

RELAXED (9-4) (6-7) 1600 15 

SIMPLE (9-4) (6-7) 1600 15 
 

6 Hydro 200 0 

(G, TEC)   Node Annual Inv Cost 
[k€/MW] 

Fuel Cost   
(€/MWh) 

Capacity (MW) 

(C2,CCGT) 6 29 24 667 

(C3,OCGT) 5 32.5 73.5 400 
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However, every model tested results in different generation investment. This is true 
mainly because generation decisions are continuous for the Relaxed and Simple model.  
As seen in Table XI,  in the Complete model the binary decision is taken and all available 
capacity for CCGT and OCGT is invested. On the contrary, on the Relaxed case only a 46% 
of available capacity is invested of the OCGT and in the Simple case no investment is 
decided for the OCGT generator. We can naturally explain this because the more 
flexibility of the system implies that minimum production constraints are no considered 
and therefore the resources can be used to its total capacity. 

 

Table XI: Generation Expansion 

 

Additionally, we analyze the results in operation of the system.  

Figure 5 shows the dispatch of the system per generator for each one of the models for 
the chosen representative days.  As we can see, the merit order remains the same per 
technology and generator in all the models. However, we can see the implications of 
considering binary commitment and start-up variables. For instance, in the complete 
case, OCGT_2 is used for long periods in order to avoid shut-downs and therefore the 
start-up costs, this implies using less hydro  (as seen in Figure 6) and increasing the total 
operation cost.  

In the Relaxed Model, given that commitment and start-up are now continuous, we see 
that the previous effect is now smoother. Additionally, hydro production can be used 
more flexible and it replaces the two highest picks of demand. This implies less utilization 
of OCGT_2. Finally, in the Simple Case, we can see that the generators do not stop, given 
that star-up costs and minimum production constraints are neglected. Moreover, in this 
case, it is decided to invest in less generation because, given the current flexibility, it is 
cheaper to use the most expensive fuel generator instead of investing in new 
generation. Therefore total cost decreases. 
 

Table XII: Total Costs 

 
Generation  Generation Exp (MW) Annual Inv Cost (M€) 

COMPLETE (C2,CCGT), (C3,OCGT) 667+400 40 

RELAXED (C2,CCGT), (C3,OCGT) 667+230 20+9.2 

SIMPLE (C2,CCGT) 667 40 
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Figure 5: Dispatch 

 

 
Fuel Costs (M€) Start-up and 

Commitment cost (M€) 
Total Operation and 

Investment Costs (M€) 

COMPLETE 954 306 1315 

RELAXED 946 294 1284 

SIMPLE 941 0 976 
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Figure 6 shows the evolution of the reservoir for each one of the models. As we can see, 
for the Complete Model the evolution of the reservoir is less flexible and the total energy 
kept is higher than in the other cases. In other words, given the startup condition of 
thermal units and the lower flexibility of the system, only 2.31 GWh of water are used 
during the year (which is a peaking unit in this case). As a consequence, the relaxed 
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model is an intermediate case, where total hydro energy used is 3.53 GWh. Finally, the  
Simple Model is the most flexible one where the most hydro energy is used (4.1 GWh) 
and more variability in seen the in evolution of the reservoir.    

 
Figure 6: Reservoir Evolution

 

Finally in Table XIII we can see the size and CPU of each model. The model is coded in 
GAMS, solved with GUROBI and run on a computer with 3.4 GHz processor and 32 GB of 
RAM. As Table XIII shows, the size of the complete and relaxed model in terms of number 
of variable is the same. However, the number of discrete variables in the complete case 
represents a 33% of the total variables and increases exponentially the CPU time for 
solving the problem. However, despite the differences in solving time and complexity 
the results between the complete and the relaxed models defer only in the magnitudes 
of the cost but the investment and operation decisions are essentially the same. Thus, 
this suggests that small inaccuracy of having a relaxed model is compensated by the high 
reduction in computational time.  On the other hand, the size of the Simple Model is 
reduced compared to the Complete and Relaxed model, however the computational 
time difference is so small that the inaccuracies introduced by the simple model might 
not compensate such a small time reduction.  
 

Table XIII: Size and CPU time 

 
Number of variables Number of discrete 

variables  
CPU time (s)  

COMPLETE 6980 2359 9200 

RELAXED 6980 4 1 
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Conclusions  

In this Section we formulate a co-optimization problem and we show a small study case 
to analyze the results of the proposed model. We formulate a compact model that tries 
to represent operation in the most detailed way handling the size of the problem with a 
time representation reduction. Additionally, we propose three different model in which 
we relaxed some of the discrete decision in order to simplify the problem. Finally we 
find that a the Relaxed Model, which includes continuous unit commitment conditions 
is the one that meets better the accuracy of operation at the least computational 
expense.  

3.2 Comparing Scenario-Based Transmission and Generation 
Expansion Planning Models Under Uncertain Wind 
Production 

The grid-scale deployment of renewables, spurred by the adoption of ambitious 
renewable portfolio standards by many governments, has prompted research into new 
and innovative grid expansion planning methods. The main difficulties facing grid-scale 
renewable deployment stem from the complication of short-term grid operations due 
to the variability and intermittency inherent to wind and solar production, as well as 
long-term uncertainties in demand growth, economic and regulatory conditions, 
weather conditions, and grid disruptions due to natural disasters, all of which complicate 
the evaluation of long-term grid expansion strategies. Scenario-based TEP/GEP models, 
which optimize grid expansion decisions with respect to multiple future operational 
scenarios, are known to be robust to short- and long-term uncertainties in power system 
conditions, and therefore hold promise as planning tools in the era of renewable 
integration. 

Scenario-based planning methods are typically applied to two-stage or multi-stage 
planning problems, in which the planner must make one set of immediate, first-stage 
decisions under uncertainty, and another set of second-stage decisions in the future 
when the uncertainty has been realized (Maloney and McCalley, 2017); (Birge and 
Louveaux, 2011). The second-stage decision variables are often constrained by or 
coupled to the values of the first-stage decision variables, and one set of second-stage 
variables is defined for each scenario considered by the model. In scenario-based 
TEP/GEP models, first-stage decision variables represent investment in new generation 
or transmission infrastructure, and second-stage variables represent operational 
variables such as generation production levels and transmission network flows. The 

SIMPLE 4628 4 0.5 
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operational variables are obviously constrained by investment in new power system 
infrastructure. 

 

Scenario-based planning techniques represent uncertainties as sets of potential 
operational scenarios (i.e. sets of possible system parameters), and make planning 
decisions based on the outcome of the decision in each of these scenarios. In this way, 
scenario-based planning solutions achieve robustness to uncertain power system 
conditions. Despite their apparent advantage over conventional/deterministic planning 
methods, little is known about the trade-offs and similarities between the various 
scenario-based planning methods that are commonly studied or used in practice. 
Therefore, the aim of this study was to compare four scenario-based TEP/GEP models in 
a large variety of power system conditions in order to identify general (i.e. non-case 
specific) similarities and differences between the various model formulations. 

The four scenario-based planning models we examined are: stochastic programming, 
minimum-maximum cost robust programming, minimum-maximum regret robust 
programming, and mean-value programming. We review the mathematical formulation 
of each model in Section 2.2. These scenario-based planning techniques are among the 
most widely used and studied in the grid planning literature, and each has a range of 
interesting applications. Stochastic programming is perhaps the most widely studied 
technique, which assigns probabilities to the scenarios and minimizes the expected cost 
of the planning solution. Mean-value programming is closely related to stochastic 
programming and can be viewed as its naïve counterpart, in which uncertain grid 
parameters are fixed to their mean values in a deterministic TEP/GEP model. The 
minimum-maximum cost/regret models are examples of "robust optimization" 
techniques, in which the maximum cost or regret (defined in Section 2.2.4) of the 
planning solution in any scenario is minimized. Robust techniques do not require 
probability information about the scenarios, which can be especially advantageous 
when the scenarios represent specific events such as grid contingencies (i.e. grid 
component failures), power plant retirements, or policy changes, whose probabilities 
are difficult or impossible to estimate. 

We did not consider planning methods such as Monte-Carlo simulation because these 
methods do not produce definitive planning solutions. Monte Carlo-like methods 
effectively map a set of operational scenarios to a set of planning solutions by solving 
the deterministic TEP/GEP model for each scenario. A definitive planning solution may 
be extracted from this set of planning solutions via a decision rule, but the optimal 
planning solution is not immediately apparent. The methods that we examined, on the 
other hand, solve only one optimization problem and produce definitive TEP/GEP 
solutions. 

We discuss the formulation of our TEP/GEP models and modeling assumptions in 
Sections 0 , 0, and 0 as well as the selection of the wind capacity factor scenarios in 



 Final report: " Task 2: Long-Term Models for Integration of RE Technologies" 
 

52  Dec 2020 

Section 0. The results are presented in Section 0. We also discuss the conclusions and 
possible avenues for future research 0. 

 

Formulation 

In this Section we present the formulation and methods to study the scenario based 
transmission and generation expansio planning. In Section 0 we introduce the notation 
to be used in the formulation. In Section 0 we present the benchmark model and in 
Section 0 we present the scenario based models to be compared.    

Notation 

Sets/Indices 

 
𝑠𝑠 ∈ 𝑆𝑆 Operational scenarios for hourly level of available wind energy over 

one year 
𝑝𝑝 ∈ 𝑃𝑃 Periods 

𝑟𝑟𝑝𝑝 ∈ 𝑅𝑅𝑃𝑃  Representative days 
Γ𝑟𝑟𝑟𝑟,𝑟𝑟 Mapping from active periods in P to RP 
𝑔𝑔 ∈ 𝐺𝐺 Generators 

𝑆𝑆 ∈ 𝑇𝑇 ⊂ 𝐺𝐺 Thermal generators 
𝑝𝑝 ∈ 𝑝𝑝 ⊂ 𝐺𝐺 Wind generators 

𝑑𝑑 ∈ 𝐷𝐷 Set of nodes 
𝐺𝐺𝐺𝐺𝐷𝐷(𝑔𝑔,𝑑𝑑) ⊆ 𝐺𝐺𝐺𝐺𝐷𝐷 Set of all ordered pairs of generators and nodes in the system 

(generator g is located at node d) 
𝐺𝐺𝐺𝐺𝐷𝐷(𝑔𝑔,𝑑𝑑) ⊆ 𝐺𝐺𝐺𝐺𝐷𝐷 Set of ordered pairs of existing generators and nodes in the network 
𝐺𝐺𝐺𝐺𝐷𝐷(𝑔𝑔,𝑑𝑑) ⊆ 𝐺𝐺𝐺𝐺𝐷𝐷 Set of ordered pairs of candidate generators and nodes in the 

network 
𝜕𝜕𝐺𝐺(𝑑𝑑,𝑑𝑑′) ⊆ 𝐷𝐷𝐺𝐺𝐷𝐷 Set of all ordered pairs of nodes denoting transmission lines in in the 

network (transmission line from node d and d’) 
𝜕𝜕𝐺𝐺(𝑑𝑑,𝑑𝑑′) ⊆ 𝐷𝐷𝐺𝐺𝐷𝐷 Set of ordered pairs of nodes denoting existing transmission lines in 

in the net-work 
𝜕𝜕𝐺𝐺(𝑑𝑑,𝑑𝑑′) ⊆ 𝐷𝐷𝐺𝐺𝐷𝐷 Set of all ordered pairs of nodes denoting candidate transmission 

lines in in the network 

Parameters 

 
𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔 Maximum power production of generator g MW 
𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑑𝑑,𝑑𝑑′ Maximum power flow along transmission line from node d to 

d’ 
MW 
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𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑟𝑟,𝑡𝑡 Normalized (p.u.) level of available wind power at period p 
for scenario s 

MW 

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑,𝑑𝑑′ Reactance of transmission line from d to d’ [p.u] 
𝑝𝑝𝐹𝐹𝑆𝑆𝑆𝑆𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑡𝑡 Fuel cost of thermal generator t €/MWh 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑔𝑔 Annualized investment cost in generator g €/MW 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑑𝑑,𝑑𝑑′ Annualized investment cost in transmission line from d to d’ € 
𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑟𝑟,𝑑𝑑 Power demand at period p at node d MW 
𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝𝑔𝑔ℎ𝑆𝑆𝑟𝑟𝑟𝑟 Weight of representative period rp [p.u] 
𝑝𝑝𝐺𝐺𝑁𝑁𝑆𝑆𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆 Energy non served cost € 

Variables 

 
𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑔𝑔,𝑑𝑑 Investment decision in new generator g at node d {0,1}/MW 
𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑑𝑑,𝑑𝑑′ Investment decision in new transmission line from node d to {0,1}/MW 
𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑟𝑟,𝑔𝑔,𝑑𝑑,𝑡𝑡 Production at period p of generator g at 

node d and scenario s 
MW 

𝑝𝑝𝑃𝑃𝑁𝑁𝑆𝑆𝑟𝑟,𝑑𝑑,𝑡𝑡 Power non served at period p, node d, and 
scenario s  

MW 

𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑟𝑟,𝑑𝑑,𝑑𝑑′,𝑡𝑡 Flow at period p from node d to d’ in scenario s MW 
𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑟𝑟,𝑑𝑑,𝑡𝑡 Voltage angle at period p of node d in scenario s [p.u] 

𝜁𝜁 auxiliary variable € 

 

Basic TEP/GEP Model Formulation and Modeling Assumptions 

In this paper, we optimize transmission and generation expansion in a simulated power 
grid comprising five nodes with electricity demand and a mix of existing wind and 
thermal generators and transmission lines, four candidate generators, and 14 candidate 
transmission lines over a one-year planning horizon. The models take the perspective of 
a central planner and consider 10 operational scenarios for the hourly level of available 
wind power in the system over one year. Our aim was to observe systematic differences 
between the models in terms of their TEP/GEP solutions and associated fixed and 
variable costs. 

The basic TEP/GEP model we use was adapted from (Gonzalez-Romero et al., 2019). The 
model was adapted from GAMS to Pyomo for convenience. The mathematical 
formulations of the four scenario-based TEP/GEP models that we examined only differ 
in the form of their objective functions (and, for the case of mean-value programming, 
in the number of operational scenarios considered by the model). Therefore, we begin 
this Section by reviewing the basic TEP/GEP model features that are common to all four 
of the scenario-based models we studied before discussing differences between them 
later on. 
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Our basic TEP/GEP model takes the perspective of a central planner with a one year 
planning horizon. Investments in additional generation or transmission made at the 
beginning of the year are immediately available for production or transmission, so we 
assume that construction time for all facilities is zero. The decision variables in the basic 
TEP/GEP model include the first-stage variables representing investment in new 
generation and transmission infrastructure: 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦,𝑔𝑔,𝑑𝑑 and 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦,𝑑𝑑,𝑑𝑑′, as well 
as second-stage variables representing generation production levels, transmission 
network flows, node voltage angles, and a Power-Not-Served (PNS) slack variable: 
𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑟𝑟,𝑔𝑔,𝑑𝑑,𝑡𝑡, 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑟𝑟,𝑑𝑑,𝑑𝑑′,𝑡𝑡, 𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑟𝑟,𝑑𝑑,𝑡𝑡, 𝑝𝑝𝑃𝑃𝑁𝑁𝑆𝑆𝑟𝑟,𝑑𝑑,𝑡𝑡. Notice that the second-stage 
variables are indexed by the operational scenario, 𝑠𝑠, but the first-stage variables are not. 
However, the basic TEP/GEP model is deterministic, so only one operational scenario is 
considered (|𝑆𝑆| = 1).  

Let 𝐷𝐷𝑝𝑝 = {𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑔𝑔,𝑑𝑑 ,𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑑𝑑,𝑑𝑑′,𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑟𝑟,𝑔𝑔,𝑑𝑑,𝑡𝑡, 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑟𝑟,𝑑𝑑,𝑑𝑑′,𝑡𝑡, 𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑟𝑟,𝑑𝑑,𝑡𝑡, 𝑝𝑝𝑃𝑃𝑁𝑁𝑆𝑆𝑟𝑟,𝑑𝑑,𝑡𝑡} be 
the set of all decision variables. We refer the reader to the list of symbols for definitions 
of the other symbols and model parameters used in the formulation.  

In general, each scenario-based planning method minimizes the total system cost, which 
is the sum of transmission/generation investment costs and the cost of operating the 
system to meet demand: 

min
𝐺𝐺𝐷𝐷

    �
(𝑔𝑔,𝑑𝑑)∈𝐺𝐺𝐺𝐺𝐷𝐷

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑔𝑔 ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑔𝑔,𝑑𝑑 + �
�𝑑𝑑,𝑑𝑑′�∈𝜕𝜕𝐺𝐺

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑑𝑑,𝑑𝑑′

∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑑𝑑,𝑑𝑑′ + �
(𝑝𝑝,𝑟𝑟𝑝𝑝)∈Γ𝑟𝑟𝑝𝑝,𝑝𝑝,𝑔𝑔,𝑑𝑑,𝑠𝑠

𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝𝑔𝑔ℎ𝑆𝑆𝑟𝑟𝑝𝑝 ∗ [𝑝𝑝𝐹𝐹𝑆𝑆𝑆𝑆𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑆𝑆

∗ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑝𝑝,𝑔𝑔,𝑑𝑑,𝑠𝑠 + 𝑝𝑝𝐺𝐺𝑁𝑁𝑆𝑆𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆 ∗ 𝑝𝑝𝑃𝑃𝑁𝑁𝑆𝑆𝑝𝑝,𝑑𝑑,𝑠𝑠] 

(26) 

We assume that wind generators have zero fuel cost and we do not penalize wind 
curtailment. Given that we consider hourly periods, the energy of each hour coincides 
with the power, and therefore we compute the total Energy Non Serve Cost as 
pENScost*vPNS. Let us also point out here that we have used a representative days 
formulation to reduce the number of operational variables in our models. Therefore, the 
variable costs computed by our models are only approximations of the true full-year 
variable costs associated with each TEP/GEP solution. 

The second-stage operational variables are only defined over four representative days 
or 96 hours of the year instead of the full 8760 hours. We clustered 365 24-hour demand 
profiles into four clusters via k-means clustering, and selected the demand profiles with 
least Euclidean distance to the cluster centers as the four representative days. The 
representative day demand profiles therefore capture the variance between clusters of 
demand profiles throughout the year but are still "prototypical" of the days within their 
respective clusters. The variable costs of these four representative days, when weighted 
by the number of days in their respective clusters 𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝𝑔𝑔ℎ𝑆𝑆𝑟𝑟𝑟𝑟 as in the third summation 
term of equation (105), should approximate the full-year operational costs, and 
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therefore the planning results should approximate those of a more detailed full-year 
planning model [reference: Diego’s paper on representative day formulations]. The 96 
periods corresponding to the hours of the representative days are called "active 
periods", and the mapping Γ𝑟𝑟𝑟𝑟,𝑟𝑟 maps active periods to their corresponding 
representative days. The notation (𝑝𝑝, 𝑟𝑟𝑝𝑝) ∈ Γ𝑟𝑟𝑟𝑟,𝑟𝑟 denotes a valid active period-
representative day pair. 

The only operational constraint in our model is the node balance constraint, 

�
(𝑔𝑔,𝑑𝑑)∈𝐺𝐺𝑔𝑔𝐺𝐺

𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑟𝑟,𝑔𝑔,𝑑𝑑,𝑡𝑡 + �
(𝑑𝑑,𝑑𝑑′)∈𝐿𝐿𝑔𝑔

𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑟𝑟,𝑑𝑑,𝑑𝑑′,𝑡𝑡 − �
(𝑑𝑑′,𝑑𝑑)∈𝐿𝐿𝑔𝑔

𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑟𝑟,𝑑𝑑′,𝑑𝑑,𝑡𝑡

+ 𝑝𝑝𝑃𝑃𝑁𝑁𝑆𝑆𝑟𝑟,𝑑𝑑,𝑡𝑡 

 = 𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑟𝑟,𝑑𝑑∀𝑑𝑑 ∈ 𝐷𝐷, 𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆 

(27) 

which ensures that the demand for power is satisfied at every node and at every period. 
The PNS slack variable is heavily penalized in the objective function (𝑝𝑝𝐺𝐺𝑁𝑁𝑆𝑆𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆 = 10,000 
M-Euros/MWh) to discourage load-shedding. However, the penalty is reduced later to 
a more reasonable value when we compute the out-of-sample variable costs for the 
TEP/GEP solutions produced by our models. 

The rest of the constraints in our model are physical, and include generation capacity 
constraints for existing and new generators,  

0 ≤ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑟𝑟,𝑔𝑔,𝑑𝑑,𝑡𝑡 ≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔∀(𝑔𝑔, 𝑑𝑑) ∈ 𝐺𝐺𝐺𝐺𝐷𝐷,𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆 (28) 

0 ≤ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑟𝑟,𝑔𝑔,𝑑𝑑,𝑡𝑡 ≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔 ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑔𝑔,𝑑𝑑∀(𝑔𝑔,𝑑𝑑) ∈ 𝐺𝐺𝐺𝐺𝐷𝐷, 𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆 (29) 

generation capacity constraints for existing and new wind generators,  

0 ≤ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑟𝑟,𝑤𝑤,𝑑𝑑,𝑡𝑡 ≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑤𝑤 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑟𝑟,𝑡𝑡∀(𝑝𝑝,𝑑𝑑) ∈ 𝐺𝐺𝐺𝐺𝐷𝐷,𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆 (30) 

0 ≤ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑟𝑟,𝑤𝑤,𝑑𝑑,𝑡𝑡 ≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑤𝑤 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑟𝑟,𝑡𝑡 ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑤𝑤,𝑑𝑑∀(𝑝𝑝,𝑑𝑑)
∈ 𝐺𝐺𝐺𝐺𝐷𝐷, 𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆 

(31) 

transmission capacity constraints for existing and new transmission lines,  

−𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑑𝑑,𝑑𝑑′ ≤ 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑟𝑟,𝑑𝑑,𝑑𝑑′,𝑡𝑡 ≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑑𝑑,𝑑𝑑′∀(𝑑𝑑,𝑑𝑑′) ∈ 𝜕𝜕𝐺𝐺,𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆 (32) 

𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑟𝑟,𝑑𝑑,𝑑𝑑′,𝑡𝑡 ≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑑𝑑,𝑑𝑑′ ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑑𝑑,𝑑𝑑′∀(𝑑𝑑, 𝑑𝑑′) ∈ 𝜕𝜕𝐺𝐺,𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆 (33) 

𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑟𝑟,𝑑𝑑,𝑑𝑑′,𝑡𝑡 ≥ −𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑑𝑑,𝑑𝑑′ ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑑𝑑,𝑑𝑑′∀(𝑑𝑑,𝑑𝑑′) ∈ 𝜕𝜕𝐺𝐺, 𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆 (34) 

DC power flow approximation voltage angle constraints for new and existing 
transmission lines,  
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𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑟𝑟,𝑑𝑑,𝑑𝑑′,𝑡𝑡 = 𝑝𝑝𝑆𝑆𝐵𝐵𝐵𝐵𝑡𝑡𝑔𝑔 ∗
𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑟𝑟,𝑑𝑑,𝑡𝑡 − 𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑟𝑟,𝑑𝑑′,𝑡𝑡

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑,𝑑𝑑′
∀(𝑑𝑑,𝑑𝑑′) ∈ 𝜕𝜕𝐺𝐺,𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠

∈ 𝑆𝑆 

(35) 

𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑟𝑟,𝑑𝑑,𝑑𝑑′,𝑡𝑡 ≤ 𝑝𝑝𝑆𝑆𝐵𝐵𝐵𝐵𝑡𝑡𝑔𝑔 ∗
𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑟𝑟,𝑑𝑑,𝑡𝑡 − 𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑟𝑟,𝑑𝑑′,𝑡𝑡

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑,𝑑𝑑′
 

 +𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑑𝑑,𝑑𝑑′(1 − 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑑𝑑,𝑑𝑑′)∀(𝑑𝑑, 𝑑𝑑′) ∈ 𝜕𝜕𝐺𝐺,𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆 

(36) 

𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑟𝑟,𝑑𝑑,𝑑𝑑′,𝑡𝑡 ≥ 𝑝𝑝𝑆𝑆𝐵𝐵𝐵𝐵𝑡𝑡𝑔𝑔 ∗
𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑟𝑟,𝑑𝑑,𝑡𝑡 − 𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑟𝑟,𝑑𝑑′,𝑡𝑡

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑,𝑑𝑑′
 

 −𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑑𝑑,𝑑𝑑′(1 − 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑑𝑑,𝑑𝑑′)∀(𝑑𝑑, 𝑑𝑑′) ∈ 𝜕𝜕𝐺𝐺,𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆 

(37) 

 and non-negativity and integrality constraints for 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑔𝑔,𝑑𝑑 and 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑑𝑑,𝑑𝑑′.  

𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑔𝑔,𝑑𝑑 ≥ 0∀(𝑔𝑔,𝑑𝑑) ∈ 𝐺𝐺𝐺𝐺𝐷𝐷 (38) 

𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑑𝑑,𝑑𝑑′ ∈ {0,1}∀(𝑑𝑑,𝑑𝑑′) ∈ 𝜕𝜕𝐺𝐺 (39) 

 Therefore, our basic TEP/GEP model is thre following: 

min
𝐺𝐺𝐷𝐷

(105) 

subject to (27) - (39) 

The demand at each node is perfectly correlated in our model –that is, we assume that 
the hourly demand profile at each node is a scalar multiple of the same basic hourly 
demand profile. This assumption, though not entirely realistic, is reasonable in small 
grids in which drivers of demand such as temperature and time of day are strongly 
correlated across nodes. Similarly, the hourly capacity factor of wind generation is the 
same at every node (the wind capacity factor scenarios apply uniformly to all locations). 
This is also a reasonable assumption in small grids, since wind availability is strongly 
correlated over small geographical areas. 

Other notable aspects of our model include its lack of ramping restrictions and unit 
commitment constraints for thermal generators (e.g. minimum run times, start-up and 
shutdown costs and times, etc.). As a result, all of our models likely over-invest in wind 
generation since the thermal generation can instantaneously respond to changes in the 
level of net demand [ref: Graduate thesis sent by Sonja]. The model also takes a 
brownfield planning perspective–that is, we assume that there are existing wind and 
thermal generators and transmission lines in the system at the start of the planning 
period. We took this approach in order to study the application of these planning 
methods in settings in which the existing generation/transmission infrastructure is 
unlikely to signficantly change–e.g. for projects with relatively short planning horizons 
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and fast construction times. We therefore decided to study the models under a variety 
of power system conditions, including differing levels of existing wind penetration and 
demand at the nodes. 

In general, our approach was to observe and compare the TEP/GEP solutions of the four 
scenario-based planning models in three different cases of existing wind penetration (in 
which wind generators respectively accounted for 0%, 13%, and 39% of existing 
generation capacity) and 12 different demand level cases at each node for a total of 36 
grid cases/system conditions. We then estimated the out-of-sample variable costs for 
each of the 144 TEP/GEP solutions by computing the variable costs of the basic TEP/GEP 
model in which the first-stage decision variable values had been fixed to those found in 
the TEP/GEP solution and the scenario 𝑠𝑠 was an out-of-sample wind capacity factor 
scenario. We computed 10 out-of-sample variable costs for each of the 144 TEP/GEP 
solutions and took the mean of these 10 costs as the "estimated" variable costs 
associated with the TEP/GEP solution. 

The purpose of testing the models under such a wide variety of power system conditions 
was to avoid drawing conclusions about the models that were case specific. We hoped 
to draw general conclusions about the differences and similarities between the four 
scenario-based planning models and the trends we observed in their TEP/GEP solutions. 

Scenario-Based TEP/GEP Model Formulations 

 In this Section, we present the mathematical formulations of the four scenario-
based TEP/GEP models. As we mentioned, the four models only differ in the form of 
their objective functions due to their different treatments of the operational scenario 
costs. 

Stochastic Programming 

 Perhaps the most widely studied scenario-based planning technique is 
stochastic programming, in which operational scenarios are assigned probabilities and 
the expected cost of the TEP/GEP solution is minimized. The most natural application 
setting for stochastic programming occurs when the operational scenarios represent 
samples of a random system parameter such as the hourly level of demand or, as in this 
paper, the hourly capacity factor of wind generators in the system, since these scenario 
data can be sampled or estimated directly from wind speed data. In this case, the 
objective of the model is to minimize the “sample average” of the scenario costs, so it is 
natural to assign probabilities of 1/10 to the 10 scenarios considered by the model, as 
we have done. The application of stochastic programming becomes less straightforward 
when the future scenarios represent specific future events (e.g. the retirement of a 
specific coal plant in the year 2030), to which probabilities are difficult to assign and 
which are less easily thought of as samples of a random variable since they are usually 
binary outcomes and only occur once. 
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Let 𝑃𝑃𝑡𝑡 be the known or estimated probability of scenario 𝑠𝑠 ∈ 𝑆𝑆. The stochastic 
programming TEP/GEP model is 

min
𝐺𝐺𝐷𝐷

    �
(𝑔𝑔,𝑑𝑑)∈𝐺𝐺𝐺𝐺𝐺𝐺

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑔𝑔 ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑔𝑔,𝑑𝑑 + 

 ∑(𝑑𝑑,𝑑𝑑′)∈𝐿𝐿𝐺𝐺 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑑𝑑,𝑑𝑑′ ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑑𝑑,𝑑𝑑′ + 

 ∑(𝑟𝑟,𝑟𝑟𝑟𝑟)∈Γ𝑟𝑟𝑟𝑟,𝑟𝑟,𝑔𝑔,𝑑𝑑,𝑡𝑡 𝑃𝑃𝑡𝑡 ∗ 𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝𝑔𝑔ℎ𝑆𝑆𝑟𝑟𝑟𝑟 ∗ [𝑝𝑝𝐹𝐹𝑆𝑆𝑆𝑆𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑡𝑡 ∗ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑟𝑟,𝑔𝑔,𝑑𝑑,𝑡𝑡 + 𝑝𝑝𝐺𝐺𝑁𝑁𝑆𝑆𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆 ∗
𝑝𝑝𝑃𝑃𝑁𝑁𝑆𝑆𝑟𝑟,𝑑𝑑,𝑡𝑡] 

(40) 

 subject to constraints (27)-(39). 

Mean-Value Programming 

The naïve counterpart to stochastic programming is sometimes called mean-value 
programming, in which random or uncertain system parameters are fixed to their 
sample average value. In other words, instead of considering multiple scenarios for 
hourly capacity factor of wind generation in the system, the model considers a single 
scenario in which the hourly capacity factor of wind is equal to the sample average of 
the 10 scenarios. This technique is even less straightforward and perhaps impossible to 
apply when the scenarios represent specific events whose probabilities are difficult to 
estimate, and whose expected values are difficult to interpret. 

In this scenario-based planning technique, the set of operational scenarios 𝑆𝑆 is reduced 
to only one operational scenario 𝑠𝑠′. Specifically, we let the hourly capacity factor of wind 
generation be 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑟𝑟,𝑡𝑡′ = ∑𝑡𝑡∈𝑆𝑆 𝑃𝑃𝑡𝑡 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑟𝑟,𝑡𝑡 in this model. The mean-value 
programming TEP/GEP model is simply 

min
𝐺𝐺𝐷𝐷

    �
(𝑔𝑔,𝑑𝑑)∈𝐺𝐺𝐺𝐺𝐺𝐺

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑔𝑔 ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑔𝑔,𝑑𝑑 + �
(𝑑𝑑,𝑑𝑑′)∈𝐿𝐿𝐺𝐺

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑑𝑑,𝑑𝑑′

∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑑𝑑,𝑑𝑑′ +  �
(𝑟𝑟,𝑟𝑟𝑟𝑟)∈Γ𝑟𝑟𝑟𝑟,𝑟𝑟,𝑔𝑔,𝑑𝑑,𝑡𝑡′

𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝𝑔𝑔ℎ𝑆𝑆𝑟𝑟𝑟𝑟 ∗ [𝑝𝑝𝐹𝐹𝑆𝑆𝑆𝑆𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑡𝑡

∗ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑟𝑟,𝑔𝑔,𝑑𝑑,𝑡𝑡′ + 𝑝𝑝𝐺𝐺𝑁𝑁𝑆𝑆𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆 ∗ 𝑝𝑝𝑃𝑃𝑁𝑁𝑆𝑆𝑟𝑟,𝑑𝑑,𝑡𝑡′] 

(41) 

subject to constraints (27)-(39). The set of operational scenarios 𝑆𝑆 is implicitly replaced 
with the mean-value scenario {𝑠𝑠′} in all variables and constraints, and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑟𝑟,𝑡𝑡 is 
replaced with its mean value 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑟𝑟,𝑡𝑡′. 
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Minimum-Maximum Cost Robust Programming 

Another widely used scenario-based planning technique is robust programming (here 
referred to as minimum-maximum cost robust programming), in which the maximum 
cost of the TEP/GEP solution under any future scenario is minimized. Robust techniques 
have the advantage of not requiring probability information about the future scenarios 
and so are perhaps more appropriate to apply when the scenarios represent specific 
future events. One disadvantage of minimum-maximum cost robust programming 
models is that their TEP/GEP solutions supposedly optimize for the “worst-case” or most 
expensive scenario in the scenario set, regardless of the likelihood of this scenario’s 
occurrence. 

Robust programming techniques seek to minimize the maximum cost or maximum 
regret of the second-stage operational variables in any scenario with respect to the first-
stage decision variables. In this Section, we review the minimum-maximum cost 
formulation of robust programming. 

The objective function of the minimum-maximum cost robust programming model is the 
following. 

min
𝐺𝐺𝐷𝐷

    �
(𝑔𝑔,𝑑𝑑)∈𝐺𝐺𝐺𝐺𝐺𝐺

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑔𝑔 ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑔𝑔,𝑑𝑑 + 

 ∑(𝑑𝑑,𝑑𝑑′)∈𝐿𝐿𝐺𝐺 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑑𝑑,𝑑𝑑′ ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑑𝑑,𝑑𝑑′ + 

 max
𝑡𝑡

{∑(𝑟𝑟,𝑟𝑟𝑟𝑟)∈Γ𝑟𝑟𝑟𝑟,𝑟𝑟,𝑔𝑔,𝑑𝑑 𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝𝑔𝑔ℎ𝑆𝑆𝑟𝑟𝑟𝑟 ∗ [𝑝𝑝𝐹𝐹𝑆𝑆𝑆𝑆𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑡𝑡 ∗
𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑟𝑟,𝑔𝑔,𝑑𝑑,𝑡𝑡 + 𝑝𝑝𝐺𝐺𝑁𝑁𝑆𝑆𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆 ∗ 𝑝𝑝𝑃𝑃𝑁𝑁𝑆𝑆𝑟𝑟,𝑑𝑑,𝑡𝑡]} 

(42) 

This can easily be linearized by adding an auxiliary variable 𝜁𝜁 to the objective function 

 min
𝐺𝐺𝐷𝐷

    ∑(𝑔𝑔,𝑑𝑑)∈𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑔𝑔 ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑔𝑔,𝑑𝑑 + 

 ∑(𝑑𝑑,𝑑𝑑′)∈𝐿𝐿𝐺𝐺 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑑𝑑,𝑑𝑑′ ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑑𝑑,𝑑𝑑′ + 𝜁𝜁 

(43) 

and adding a new constraint for each scenario 

 

�
(𝑟𝑟,𝑟𝑟𝑟𝑟)∈Γ𝑟𝑟𝑟𝑟,𝑟𝑟,𝑔𝑔,𝑑𝑑

𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝𝑔𝑔ℎ𝑆𝑆𝑟𝑟𝑟𝑟 ∗ [𝑝𝑝𝐹𝐹𝑆𝑆𝑆𝑆𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑡𝑡 ∗ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑟𝑟,𝑔𝑔,𝑑𝑑,𝑡𝑡 + 𝑝𝑝𝐺𝐺𝑁𝑁𝑆𝑆𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆

∗ 𝑝𝑝𝑃𝑃𝑁𝑁𝑆𝑆𝑟𝑟,𝑑𝑑,𝑡𝑡] ≤ 𝜁𝜁∀𝑠𝑠 ∈ 𝑆𝑆 

(44) 

The model is therefore (43) subject to (27)-(39) and (44). 
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Minimum-Maximum Regret Robust Programming 

A closely related technique is minimum-maximum regret robust programming, in which 
the maximum regret of the solution in any operational scenario is minimized. Regret of 
a TEP/GEP solution for scenario 𝑠𝑠 is defined to be the difference between the solution’s 
variable costs in this scenario, 𝑝𝑝𝐺𝐺𝑡𝑡, and the variable costs of the perfect information 
TEP/GEP solution for this scenario 𝑝𝑝𝐺𝐺𝑡𝑡∗. By the perfect information TEP/GEP solution for 
scenario 𝑠𝑠, we mean the solution of the deterministic or basic TEP/GEP model when it is 
known that only scenario 𝑠𝑠 will occur, i.e. 𝑆𝑆 = {𝑠𝑠}. The minimum-maximum regret 
formulation does not necessarily plan for the worst-case scenario since its objective is 
to minimize the maximum cost difference between its solution and the "ideal" solution 
of each scenario. 

The minimum-maximum regret robust programming objective function is 

min
𝐺𝐺𝐷𝐷

    ∑(𝑔𝑔,𝑑𝑑)∈𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑔𝑔 ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑔𝑔,𝑑𝑑 +
∑(𝑑𝑑,𝑑𝑑′)∈𝐿𝐿𝐺𝐺 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑑𝑑,𝑑𝑑′ ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑑𝑑,𝑑𝑑′ + max

𝑡𝑡
{∑(𝑟𝑟,𝑟𝑟𝑟𝑟)∈Γ𝑟𝑟𝑟𝑟,𝑟𝑟,𝑔𝑔,𝑑𝑑 𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝𝑔𝑔ℎ𝑆𝑆𝑟𝑟𝑟𝑟 ∗

[𝑝𝑝𝐹𝐹𝑆𝑆𝑆𝑆𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑡𝑡 ∗ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑟𝑟,𝑔𝑔,𝑑𝑑,𝑡𝑡 + 𝑝𝑝𝐺𝐺𝑁𝑁𝑆𝑆𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆 ∗ 𝑝𝑝𝑃𝑃𝑁𝑁𝑆𝑆𝑟𝑟,𝑑𝑑,𝑡𝑡] − 𝑝𝑝𝐺𝐺𝑡𝑡∗} 

(45) 

 which can be linearized by adding the auxiliary variable 𝜁𝜁 to the objective  

min
𝐺𝐺𝐷𝐷

    �
(𝑔𝑔,𝑑𝑑)∈𝐺𝐺𝐺𝐺𝐺𝐺

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑔𝑔 ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑔𝑔,𝑑𝑑 + 

 ∑(𝑑𝑑,𝑑𝑑′)∈𝐿𝐿𝐺𝐺 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑑𝑑,𝑑𝑑′ ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑑𝑑,𝑑𝑑′ + 𝜁𝜁 

(46) 

 and adding a new constraint for each scenario  

�
(𝑟𝑟,𝑟𝑟𝑟𝑟)∈Γ𝑟𝑟𝑟𝑟,𝑟𝑟,𝑔𝑔,𝑑𝑑

𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝𝑔𝑔ℎ𝑆𝑆𝑟𝑟𝑟𝑟 ∗ [𝑝𝑝𝐹𝐹𝑆𝑆𝑆𝑆𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑡𝑡 ∗ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑟𝑟,𝑔𝑔,𝑑𝑑,𝑡𝑡 + 𝑝𝑝𝐺𝐺𝑁𝑁𝑆𝑆𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆

∗ 𝑝𝑝𝑃𝑃𝑁𝑁𝑆𝑆𝑟𝑟,𝑑𝑑,𝑡𝑡] − 𝑝𝑝𝐺𝐺𝑡𝑡∗ ≤ 𝜁𝜁∀𝑠𝑠 ∈ 𝑆𝑆 

(47) 

 The model is therefore (46) subject to (27)-(39) and (47). 

 

Design of Power System Model 

The power system in our models has five nodes with electricity demand labeled nodes 
1-5, and four nodes with no electricity demand but each with a candidate generator, 
labeled nodes 6-9. Nodes 1-5 are equipped with a set of existing thermal and wind 
generators and transmission lines. It is not guaranteed that the existing power system 
by itself is "feasible," in that the existing transmission/generation capacity is sufficient 
to meet demand at all nodes for all periods. The model allows investment in new wind 
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generators and thermal generators (combined-cycle gas turbine plants) at nodes 6-9, as 
well as investment in new transmission to connect nodes 6-9 with the existing nodes 
with demand. 

Nodes 6-9 are intended to represent candidate generation sites that are not already 
connected to the existing grid. Nodes 6 and 7 are intended to represent "nearby" 
generation sites with candidate transmission lines going to all 5 existing nodes. Nodes 8 
and 9 represent more distant generation sites with higher transmission costs, and only 
have candidate transmission lines running to nodes 6 and 7. Therefore, candidate 
generators at nodes 8 and 9 can only be connected to the existing grid by constructing 
two transmission lines–one of which must run to node 6 or node 7 and the other from 
nodes 6 or 7 to the existing grid. Nodes 7 and 9 each have a candidate combined-cycle 
gas turbine (CCGT) generator, and nodes 6 and 8 each have a candidate wind farm. 
Furthermore, the fixed investment costs of the more distant candidate generators at 
nodes 8 and 9 are lower than those of their counterparts at nodes 6 and 7. This trade 
off may occur, for example, when the cost of land or construction is greater in more 
densely populated areas. 

 
Figure 7: Depiction of the power system model network architecture. 

    

The capacity of new investments is not limited (𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑔𝑔,𝑑𝑑 ∈ [0,∞)). See Figure 7 for 
a depiction of the full network, including both existing and candidate transmission lines 
and candidate generators. 
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Selection of Wind Capacity Factor Scenarios 

Our models consider 10 scenarios for the hourly capacity factor of wind generators in 
the system. For the stochastic programming and mean-value models, we assume that 
the probability of each scenario is 1/10. 

We downloaded 54 year-long 10-minute interval wind profiles (data for the theoretical 
production level of a 3 MW Vestas V90 wind turbine measured at a particular site at 10-
minute intervals over a full year) from the National Renewable Energy Laboratory’s 
Western Wind Integration data set. (https://www.nrel.gov/grid/western-wind-
data.html). The sites chosen for the data collection represent various locations scattered 
throughout the Midwestern United States over several years. We randomly selected 10 
of these 54 year-long wind power profiles as the data for the 10 scenarios. The peak 
values of the wind profiles were normalized to one, so that the data would effectively 
represent a capacity factor for wind generators. Because our models use one-hour time 
periods, we selected the subset of data points from the wind profiles corresponding to 
the beginning of each hour throughout the year. Sample one-day periods from the wind 
capacity factor scenarios are shown in Figure 8, as well as the entire set of 54 wind 
profiles. 

 
Figure 8: One-day samples of profiles of hourly capacity factor of wind for all possible scenarios, with 

selected (i.e. used-in-model) wind scenarios highlighted 

    

Results 

We have summarized our results in the following two ways: firstly, by directly comparing 
TEP/GEP solutions–i.e. the relative size of investments in new wind generation, thermal 
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generation, and transmission capacity in the solutions of each of the scenario-based 
planning models Figure 9; secondly, by computing the mean out-of-sample variable 
costs of each model’s TEP/GEP solutions Figure 8. We begin our discussion of the results 
by comparing the TEP/GEP solutions directly. 

 

 
Figure 9: Transmission and generation capacity installation averaged across all demand cases for each 
wind penetration case and planning method. 

In Figure 9 we observed that the mean-value programming model consistently invested 
in the most wind power capacity in all wind penetration cases, likely because the model 
represents the hourly capacity factor of wind power as the hourly capacity factor 
averaged over all 10 scenarios. Therefore, the variance of the hourly capacity factors in 
this model is decreased by a factor of 1/10 (and generally by a factor of 1/𝑁𝑁 for 𝑁𝑁 
scenarios), so the model underestimates the amount of grid flexibility required to deploy 
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wind power. Hence, the model over-invests in wind power and under-invests in CCGT 
thermal generation, which is required to meet demand during periods of low wind 
availability. We therefore observed, Figure 10, that mean-value TEP/GEP solutions often 
resulted in load-shedding in the out-of-sample variable cost tests, resulting in higher 
variable costs on average. 

 

 

Figure 10:Box plot of average out-of-sample variable costs for each planning method and grid case. 

As seen in Figure 9, the minimum-maximum cost robust programming model invested 
the most in new thermal generation and the least in new wind generation overall. These 
results likely reflect the model’s tendency to plan for the "worst-case" cost scenario. In 
this case, the worst-case cost scenario is the one with the lowest average wind capacity 
factor (i.e. the least total available wind energy over the year), since wind energy is the 
least expensive source of energy in the model. In essence, the minimum-maximum cost 
model planned for the scenario in which the capacity factor of wind generation would 
be the lowest on average, so the model considered investments in wind generation to 
be less cost-effective than investments in CCGT thermal generation.  

We observed also, in Figure 9, that the minimum-maximum regret robust programming 
model invested the most in new generation capacity overall, and the second most in 
new wind power capacity after mean-value programming. However, the mixture of new 
thermal and wind generation capacity in this model’s solutions suggests that the 
solutions usually remain feasible (or at least do not result in load-shedding). The high 
investments in new generation capacity may be explained by considering that the model 
simultaneously optimizes for scenarios with lots of available wind energy and very little 
available wind energy–therefore, it invests in lots of wind power capacity to take 
advantage of the inexpensive power when it is available, and in lots of thermal 
generation capacity to avoid load-shedding when it is not. 
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The stochastic programming model also typically invested in a mixture of wind and 
thermal generation but invested in less total generation/transmission capacity overall. 
This might be explained because the minimum-maximum regret model invests in the 
most generation capacity because its objective function is the maximum of a set of 
"distances"– the distance of the current solution’s variable costs from the perfect 
information variable costs of each scenario. Thus, if the variance of the scenarios is large 
(i.e. there are both high average capacity factor and low average capacity factor 
scenarios) then the planning solution must be such that the variable costs of the solution 
in any scenario can be very close to the perfect information variable costs of each 
scenario, meaning that it must construct lots of new wind generation for high-wind 
energy scenarios and lots of new thermal generation for low-wind energy scenarios. 
Stochastic programming, on the other hand, only considers the weighted sum of its 
variable costs in each scenario (weighted by the probability of each scenario), and is not 
concerned with being able to closely match the perfect information variable costs of 
each scenario, so it invests in less new generation in to reduce fixed costs. 

Not surprisingly, therefore, we observed in Figure 10 that the minimum-maximum 
regret model’s planning solutions had the lowest variable costs on average . The 
planning solutions of the stochastic programming model had the second lowest variable 
costs, followed by the minimum-maximum cost model (which did not invest in wind, and 
so could not take advantage of the zero-cost wind power in high capacity factor 
scenarios). The planning solutions of the mean-value programming model often resulted 
in load-shedding, and thus suffered large cost penalties in many scenarios. We consider 
this a major issue with the mean-value programming model. Some of the planning 
solutions are displayed in the power grid diagrams in Figure 11. Investments in new 
CCGT thermal generators are displayed in brown, and investments in new wind power 
generators are displayed in cyan. New transmission lines are represented by heavy black 
lines between nodes. 
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Figure 11: Diagrams of planning results for power grid with 13% wind penetration. Cyan-colored circles 

at nodes represent investments in new wind power generation. Brown-colored circles represent 
investments in new CCGT generators. Heavy black lines connecting nodes represent investments in new 

transmission lines. 

 

Conclusions 

Our goal was to understand the general behavior of each scenario-based power grid 
planning model under a variety of system conditions and remark on any interesting 
trends. Our results suggest the following conclusions about each of the model’s 
performances, relative to one another: 

  
• Mean-value programming models tend to underestimate the variance in the 

level of available wind power, and therefore invest the most in new wind 
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generation and the least in new thermal generation  

 
• Minimum-maximum cost robust programming models plan for the worst-case 

cost scenario, e.g. the scenario with the lowest capacity factor for new wind 
generation, and therefore invest the least in new wind generation and the most 
in new thermal generation  

 
• Minimum-maximum regret robust programming models and stochastic 

programming models both invest in a mixture of new wind and thermal 
generation, especially in systems with low existing wind penetration (the 0% and 
13% wind penetration cases). However, minimum-maximum regret models 
invest in more total generation capacity than stochastic programming models.  

For future work we are interested to find out whether the addition of a wind curtailment 
penalty will reduce the size of wind investments in the minimum-maximum regret 
models. Furthermore, we are interested in studying these models in a greenfield setting 
(i.e. without any existing generation or transmission in the system), which would allow 
for easier interpretation of the planning results. 

 

 

4 Transmission- and generation-expansion planning models 
for imperfectly competitive markets 

This task focuses on the development of a mathematical bi-level model for transmission 
expansion planning for imperfectly competitive electricity markets. A first sub-task will 
be the development of a generation-expansion planning equilibrium model reflecting 
the potential exercise of market power, which will then be extended to a bi-level model 
including transmission investment in the upper level. Such a model accounts for the fact 
that transmission planning affects different agents in the electricity market (TSOs, MIs, 
GENCOs) that might have distinct and often conflicting objectives. 

 For example, a TSO might be interested in minimising system costs or maximising social 
welfare, whereas GENCOs mainly focus on maximising profits. Conventional 
transmission-expansion planning models, such as the one developed in Task 2.1, are not 
able to capture the game-theoretic interaction of opposing agents and are, thus, not 
suitable for assessing the potential effects of the exercise of market power on 
transmission-planning decisions. The game-theoretic model developed in this task 
adequately captures such interactions, thereby allowing for analyses able to support a 
transition to a low-carbon economy as envisaged by the SET-Plan. This first type of 
analysis will allow us to determine the extent to which existing least-cost models yield 
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sub-optimal network expansion results due to the fact that they are disregarding 
strategic market behavior. This model will also shed light onto how different degrees of 
competition among power producers impact optimal transmission planning and on how 
the exercise of market power can be alleviated through improving the network, thereby 
potentially increasing the penetration of renewables. 

 

4.1 Notation 

The notation presented will be used used in Sections 4.2 y 4.3. 

Sets / Indices 

𝑦𝑦 ∈ 𝑌𝑌 Year  
𝑝𝑝 ∈ 𝑃𝑃 Periods (hours in the year) 
𝑝𝑝𝑠𝑠 ∈ 𝑃𝑃𝑠𝑠 Moving window periods  
𝑟𝑟𝑝𝑝 ∈ 𝑅𝑅𝑃𝑃 Representative periods  
Γ𝑟𝑟𝑟𝑟,𝑟𝑟 Set of correspondence between 𝑟𝑟𝑝𝑝 and 𝑝𝑝 
𝑝𝑝 Final period 

𝑑𝑑,𝑑𝑑′ ∈ 𝐷𝐷 Nodes 
𝑔𝑔 ∈ 𝐺𝐺 Generator units 

𝑆𝑆(𝑔𝑔)  ∈ 𝑇𝑇 Thermal units  
𝑝𝑝(𝑔𝑔)  ∈ 𝑝𝑝 Wind generation 
ℎ(𝑔𝑔)  ∈ 𝐻𝐻 Storage units  
ℎ𝑓𝑓(ℎ)  ∈ 𝐻𝐻𝐹𝐹 Fast short-term storage units (batteries) 
ℎ𝑠𝑠(ℎ) ∈ 𝐻𝐻𝑆𝑆 Slow long-term storage units (hydro) 
𝐺𝐺𝐺𝐺𝐷𝐷(𝑔𝑔,𝑑𝑑) Set of all possible g located at node d 
𝐺𝐺𝐺𝐺𝐷𝐷(𝑔𝑔,𝑑𝑑) Set of existing g located at node d 
𝐺𝐺𝐺𝐺𝐷𝐷(𝑔𝑔, 𝑑𝑑) Set of candidate g located at node d 
𝜕𝜕𝐺𝐺(𝑑𝑑,𝑑𝑑′) Set of all possible lines from node d to d’ 
𝜕𝜕𝐺𝐺(𝑑𝑑,𝑑𝑑′) Set of existing lines from node d to d’ 
𝜕𝜕𝐺𝐺(𝑑𝑑,𝑑𝑑′) Set of candidate lines from node d to d’ 
𝐻𝐻𝑝𝑝𝑝𝑝′ Univocal correspondence between period p and p’ ∈ Γ𝑟𝑟𝑟𝑟,𝑟𝑟 

Parameters 

𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔 Maximum capacity of technology 𝑔𝑔 MW 
𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑑𝑑𝑑𝑑′ Maximum flow in line dd’ MW 
𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑′ Reactance of line dd’ [p.u] 

𝑝𝑝𝐹𝐹𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑡𝑡 Fuel cost of technology 𝑆𝑆 €/MWh 
𝑝𝑝𝐹𝐹𝑝𝑝𝑥𝑥𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑡𝑡 Fix operation cost of thermal generator € 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑔𝑔 Annualized investment cost 𝑔𝑔  €/MW 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑑𝑑𝑑𝑑′ Annualized investment cost of line dd’ € 
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𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦𝑟𝑟𝑑𝑑 Demand Intercept at year y period 𝑝𝑝 at node 𝑑𝑑 MW 
𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑡𝑡𝑝𝑝𝑆𝑆 Demand Slope  €/MW 

𝑝𝑝𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑦𝑦ℎ Efficiency of storage unit h  [p.u] 
𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑡𝑡𝑑𝑑 Energy inflows for year y period p storage hs at node d MWh 
𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝ℎ Max reservoir level of storage unit h  MW 
𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝ℎ Min reservoir level of storage unit h MW 
𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐺𝐺𝑡𝑡𝑝𝑝𝑠𝑠ℎ Maximum consumption of storage unit MW 

𝑀𝑀 Time window h 
𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟 Weight of each representative day [p.u] 
𝑝𝑝𝑆𝑆𝑝𝑝 Base Power  MW 
𝜃𝜃𝑔𝑔 Conjectural variation of GENCO g €/MW 
TC Total Costs  € 
LI Line Investment Costs  € 
GI Generation Investment Costs  € 
OC Operation Cost  € 
UD Utility of the Demand € 

Variables 

𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑 Production at year 𝑦𝑦 period 𝑝𝑝 of generator 𝑔𝑔 at node d MW 

𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑 Investment status at year 𝑦𝑦 of generation unit g at node d  {0,1}/MW 
𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′ Investment status at year 𝑦𝑦 of line connecting node 𝑑𝑑 to 𝑑𝑑′ {0,1}/MW 

𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′ Flows at year 𝑦𝑦 at period 𝑝𝑝  from node d to d’  MW 
𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑 Voltage angle at year y period p node d  p.u. 
𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑 Demand at year y period 𝑝𝑝 at 𝑑𝑑 MW 
𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑 Level at year 𝑦𝑦 period 𝑝𝑝 of storage unit h at node 𝑑𝑑  MW 

𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑 Consumption at year y period 𝑝𝑝 of storage unit h at node 𝑑𝑑 MW 

𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑 Spillage at year 𝑦𝑦 period 𝑝𝑝 of storage unit h at node 𝑑𝑑 MW 
λypd  Prices at year period p node d  €/MW 

𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ Flows at year 𝑦𝑦 at period 𝑝𝑝  from node d to d’  MW 
Δ𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ Flow step magnitude year 𝑦𝑦 at period 𝑝𝑝  from node d to d’ MW 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′𝑘𝑘 Binary variable for flow at year y period p from node d to d’ {0,1}/MW 
𝑝𝑝𝐹𝐹𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′𝑘𝑘 Flow times price at year y period p from node d to d’ and step k MW 

4.2 Proactive Transmission Expansion Planning With Storage 
Considerations 

Under the current European deregulated market, centralized TSOs have to decide 
network investment by minimizing total operation cost (or maximizing total welfare), 
while decentralized GENCOs decide their expansion by maximizing their own profit. This 
process creates contradictory incentives that can result in a misalignment of short and 
long-term signals. Moreover, when the ideal cost-minimizing generation capacity 
investment assumed by the TSOs differs from reality, (due to strategic market 
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interactions between GENCOs), then the transmission expansion plan could end up not 
being the cheapest option for society. The question that we try to answer in this paper 
is: if instead of assuming perfect competition a TSOs foresees strategic market 
outcomes, can this be beneficial for society? In order words, we want to analyze and 
compare, under a proactive framework approach, how the decisions of either perfect 
competition or Cournot in the operation and generation investment can affect the 
transmission decisions and the total welfare that the TSO aims to maximize.  

For instance, if we consider that a TSOs takes its investment decision first, we would 
expect that, in order to achieve lower operation costs, a TSOs would invest as much as 
possible in transmission lines. This decision could be explained because, for the long-
term, the magnitude of transmission investment is lower than generation investment. 
However, GENCOs might prefer lower investments in transmission capacity and higher 
investment in generation capacity in order to benefit from short-term price increases 
resulting from transmission congestions. These effects, in addition to the increasing 
penetration of renewable energy, storage and distributed generation, result in greater 
differences between short-term incentives (dependent on intermittency of renewable 
sources) and long-term decisions (dependent on seasonality). In this sense, we are 
interested in modeling how the competition in the electricity market affects and is 
affected by the long-term decisions in both generation and transmission expansion 
planning. Particularly, given that GENCOs interact with each other in a market driven 
framework while transmission is operated in a centralized way.  

Moreover, we do not consider uncertainty in this paper. Conceptually speaking, 
introducing uncertainty would be a simple extension of our model, i.e. by means of 
stochastic programming for example. However, in our long-term investment problem 
we face different sources of uncertainty that can be either short long-term 
uncertainties, and that potentially should be addressed with different techniques such 
as robust optimization or stochastic programming in order to adequately capture to 
nature of each source of uncertainty (e.g. renewable production, policy decisions, price 
of fuels, demand evolution, etc.). However, this is out of the scope of this paper. In 
Section 0, the mathematical formulation of the one-level and bi-level models is 
presented. In Section 0, we present a study case to compare centralized and 
decentralized models. In Section 0, we conclude. 

Proactive model formulation  

In Section 0 we present the market responsive framework that is used to represent the 
distinctive degrees of competition in this proactive framework. Figure 12 shows the 
proposed framework, where TSO is in the Upper Level (see 0) and GENCOs are in the 
Lower Level (see 0). Then, in 0, the lower level is re-formulated as a set of non-linear 
equations by considering its Karush-Kuhn-Tucker (KKT) conditions. Finally, in 0, the 
structure of the linearized one-level proactive problem is presented, allowing us to solve 
this problem as a one-level Mixed Integer Linear Program (MILP).  
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Conjectured-Price Market 

The market responsive framework, without the consideration of generation and 
transmission investment, is now formulated. We will follow the model proposed in [71]. 
For the sake of simplicity, we consider only one period, and only one GENCO per node. 
Considering one GENCO per node implies that the residual demand is seen by only one 
GENCO, and therefore each GENCO decides both price and quantity to be produced 
(considering transmission prices also, please see 0) as seen in as seen in [84], [88],[86]. 
Moreover, elasticity is assumed to be linear where pDemand represents the inelastic 
part of the demand and pDslope represents how it reacts to prices.  

 If  demand is given by equation (48) and if every GENCO maximizes its profit as in (49),  
then market conditions are given by (50) 

 

𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑑𝑑 = 𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑑𝑑 − 𝑝𝑝𝐷𝐷𝑠𝑠𝑝𝑝𝑡𝑡𝑝𝑝𝑆𝑆𝑑𝑑 ∗ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔𝐵𝐵𝑑𝑑(𝑔𝑔,𝑑𝑑) ∀𝑔𝑔 (48) 

𝑃𝑃𝑟𝑟𝑡𝑡𝑓𝑓𝑝𝑝𝑆𝑆𝑔𝑔 = 𝜆𝜆𝑔𝑔𝐵𝐵𝑑𝑑(𝑔𝑔,𝑑𝑑) ∗ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔 − 𝑝𝑝𝐹𝐹𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑔𝑔 ∗ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔  ∀𝑔𝑔 (49) 

𝜕𝜕𝑃𝑃𝑟𝑟𝑡𝑡𝑓𝑓𝑝𝑝𝑆𝑆𝑔𝑔
𝜕𝜕𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔

= 𝜆𝜆𝑔𝑔𝐵𝐵𝑑𝑑(𝑔𝑔,𝑑𝑑) + 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔 ∗
𝜆𝜆𝑔𝑔𝐵𝐵𝑑𝑑(𝑔𝑔,𝑑𝑑)

𝜕𝜕𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔
− 𝑝𝑝𝐹𝐹𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑔𝑔 = 0   ∀𝑔𝑔 

(50) 

 

Let us define 𝜃𝜃𝑔𝑔 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑣𝑣𝑣𝑣𝑟𝑟𝑣𝑣𝑑𝑑𝑔𝑔

  as the conjecture that is assumed to be known for every 

GENCO. If 𝜃𝜃𝑔𝑔 = 0 we consider the Perfect Competition case (PC), and if 𝜃𝜃𝑔𝑔 = 1
𝑟𝑟𝐺𝐺𝑆𝑆𝑝𝑝𝑣𝑣𝑟𝑟𝑔𝑔

 we 
consider the Cournot Oligopoly case (CO).  

Upper Level 

The objective function (51) minimizes the investment cost in transmission lines (LI) and 
generation (GI) plus the total operation cost (OC). Each equation is defined for 𝑝𝑝 ∈

Figure 12: Model Hierarchy 

Low
er 

 Level 
U

pper  
Level 

TSO minimizes 
 Investment Cost +Operation Cost 

Subject to: (55) 
 

GENCO maximizes 
 Profits – Inv. Cost    

Subject to: (60) - (14) 
  

Market Clearing Condition (78) 

TSO maximizes 
 Congestion Rents    

Subject to: (72) - (77) 
  

Consumers max. 
Utility 

Subject to: (57)  
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Γ𝑟𝑟𝑟𝑟,𝑟𝑟.(except 20). Please note Γ𝑟𝑟𝑟𝑟,𝑟𝑟 indicates, from the whole year, which are the hours 
that constitute each representative days. Equation (55) states that if a line is built, it will 
continue functioning during the time horizon.  

Minimize
𝑣𝑣𝑣𝑣𝑔𝑔𝑤𝑤𝐿𝐿𝑣𝑣𝑛𝑛𝑔𝑔𝑦𝑦𝑑𝑑𝑑𝑑′

    𝐺𝐺𝑝𝑝 + 𝜕𝜕𝑝𝑝 + 𝑝𝑝𝐺𝐺   (51) 

 

Subject to (52) - (55) , and Lower Level constraints. 

 

 

𝐺𝐺𝑝𝑝: = �(𝑌𝑌 − 𝑦𝑦 + 1) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑔𝑔   ∗ � 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑  −   𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦−1,𝑔𝑔𝑑𝑑�
𝑔𝑔𝑦𝑦𝑑𝑑

 (52) 

𝜕𝜕𝑝𝑝 ≔ � (𝑌𝑌 − 𝑦𝑦 + 1) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜕𝜕𝑑𝑑𝑑𝑑′ ∗ �𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′ − 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦−1,𝑑𝑑𝑑𝑑′�
𝑦𝑦𝑑𝑑𝑑𝑑′

 (53) 

𝑝𝑝𝐺𝐺: = � 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟 ∗ 𝑝𝑝𝐹𝐹𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑡𝑡 ∗ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑡𝑡𝑑𝑑
𝑦𝑦,(𝑟𝑟,𝑟𝑟𝑟𝑟)∈Γ𝑟𝑟𝑟𝑟,𝑟𝑟,𝑡𝑡,𝑑𝑑

 (54) 

   𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦−1,𝑑𝑑𝑑𝑑′ ≤ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′  ∀(𝑑𝑑,𝑑𝑑′) ∈ 𝜕𝜕𝐺𝐺 ∀𝑦𝑦  (55) 

Lower Level: market equilibrium 

This model considers the market clearing conditions, the usual operating constraints and 
a detailed storage operation modeling. At this level, we have both the market clearing 
and generation investment decisions. On the one hand, GENCOs seek to maximize 
benefits defined as Operation Incomes (OI) minus Operation Cost (OC) and Generation 
Investment (GI). On the other hand, the TSO wants to maximize congestions rents. We 
consider that both players act simultaneously on the lower level. 

It is important to note that the lower level is single-level equilibrium model with two 
types of players (GENCOs, and, TSO) who take generation capacity investment and 
production decisions (GENCOs), and, corresponding power flow and voltage angle 
decisions (TSO) simultaneously. This implies that there is no anticipation of market 
outcomes in generation capacity decisions by GENCOs. In any case, since we are able to 
adapt the degree of competition in the market in our model, choosing a less competitive 
market might “compensate” for this non-anticipation [110]. Therefore, we consider a 
spatial equilibrium model where generators compete a la COURNOT and react naively 
to the transmission congestions as in [67]. This generalizes the work done in [111].  

Finally, we assume that there is only one GENCO per node, but we might have several 
generation units per GENCO. Moreover, we consider only one unit per GENCO and thus 
index g represents both generators and company.  
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Consumer: Demand Utility maximization 

The consumers try to maximize the utility of the demand, by deciding demand. Their 
optimization problem is given by: 

𝑀𝑀𝑀𝑀𝑥𝑥𝑣𝑣𝐺𝐺𝑔𝑔𝑣𝑣𝐵𝐵𝑛𝑛𝑑𝑑𝑦𝑦𝑟𝑟𝑦𝑦  � 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟 ∗ �𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦𝑟𝑟𝑑𝑑 ∗ 𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦𝑟𝑟𝑑𝑑 −
𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦𝑟𝑟𝑑𝑑

2

2
�

𝑦𝑦,(𝑟𝑟,𝑟𝑟𝑟𝑟)∈Γ𝑟𝑟𝑟𝑟,𝑟𝑟,𝑑𝑑

   

 

(56) 

Subject to (57)  

𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦,𝑟𝑟,𝑑𝑑 ≥ 0                          ∶ 𝜄𝜄𝑦𝑦,𝑟𝑟,𝑑𝑑     ∀𝑦𝑦𝑝𝑝𝑑𝑑             (57) 

GENCO problem 

The dual variables of each set of equations appear after colons. 

𝑀𝑀𝑟𝑟𝑔𝑔 Maximize
𝐿𝐿𝐿𝐿

𝑝𝑝𝑝𝑝 − 𝑝𝑝𝐺𝐺 − 𝐺𝐺𝑝𝑝 (58) 

𝜕𝜕𝜕𝜕: =  �𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑 ,𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 ,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑦𝑦𝑟𝑟𝑤𝑤𝑑𝑑 ,𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑 ,𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑 ,𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑  � 

𝑝𝑝𝑝𝑝: = � 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟 ∗ ( 𝜆𝜆𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑) ∗ (𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑∈𝐺𝐺𝑔𝑔𝐺𝐺 − 𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑∈𝐺𝐺𝑔𝑔𝐺𝐺)
𝑦𝑦,𝑟𝑟,𝑟𝑟𝑟𝑟,𝑔𝑔,𝑑𝑑

 

 

(59) 

 

Subject to (52), (54), (59) , (60) - (14). 

Equation (78) represents the nodal power balance (or market clearing condition) in 
which demand must equal local generation plus power inflows and minus power 
outflows. The dual variable 𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑 related to this set of constraints correspond to the 
Locational Marginal Prices (LMP). 

 
0 ≤ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 ≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔                                ∶ �̅�𝜌𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 ,   𝜌𝜌𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑        ∀𝑦𝑦𝑝𝑝,∀𝑔𝑔𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷 (60) 

0 ≤ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑦𝑦𝑟𝑟𝑤𝑤𝑑𝑑 ≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑟𝑟𝑤𝑤𝑑𝑑                             ∶ 𝜌𝜌𝑝𝑝����𝑦𝑦𝑟𝑟𝑤𝑤𝑑𝑑 ,𝜌𝜌𝑝𝑝𝑦𝑦𝑟𝑟𝑤𝑤𝑑𝑑    ∀𝑦𝑦𝑝𝑝,∀𝑝𝑝𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷     (61) 

0 ≤  𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 ≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔 ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑤𝑤𝑑𝑑       ∶ 𝜔𝜔�𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 ,   𝜔𝜔𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑      ∀𝑦𝑦𝑝𝑝,∀𝑔𝑔𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷   (62) 
0 ≤ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑦𝑦𝑟𝑟𝑤𝑤𝑑𝑑 ≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑟𝑟𝑤𝑤𝑑𝑑 ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑤𝑤𝑑𝑑 ∶ 𝜔𝜔𝑝𝑝�����𝑦𝑦𝑟𝑟𝑤𝑤𝑑𝑑 ,𝜔𝜔𝑝𝑝𝑦𝑦𝑟𝑟𝑤𝑤𝑑𝑑    ∀𝑦𝑦𝑝𝑝,∀𝑝𝑝𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷 (63) 

     0 ≤
𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑

𝑝𝑝𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑦𝑦ℎ
≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐺𝐺𝑡𝑡𝑝𝑝𝑠𝑠ℎ                            ∶ 𝜅𝜅𝑆𝑆���𝑦𝑦𝑟𝑟ℎ𝑑𝑑 , 𝜅𝜅𝑆𝑆𝑦𝑦𝑟𝑟ℎ𝑑𝑑      ∀𝑦𝑦𝑝𝑝,∀ℎ𝑑𝑑 ∈  𝐺𝐺𝐺𝐺𝐷𝐷 (64) 

0 ≤
𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑
𝑝𝑝𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝𝑆𝑆ℎ

≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝ℎ ∗ 𝐺𝐺𝑇𝑇𝐷𝐷 ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦ℎ𝑑𝑑 ∶ 𝜅𝜅𝑆𝑆���𝑦𝑦𝑟𝑟ℎ𝑑𝑑 , 𝜅𝜅𝑆𝑆𝑦𝑦𝑟𝑟ℎ𝑑𝑑     ∀𝑦𝑦𝑝𝑝,∀ℎ𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷 (65) 

−𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦−1,𝑔𝑔𝑑𝑑 + 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑 ≥ 0     ∶ 𝛽𝛽𝑦𝑦𝑔𝑔𝑑𝑑                      ∀𝑦𝑦𝑔𝑔𝑑𝑑 (66) 
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0 ≥ −𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑; 0 ≤ 𝑀𝑀𝑀𝑀𝑥𝑥𝐺𝐺𝑆𝑆𝑝𝑝𝑔𝑔 − 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑  ∶ �̅�𝜊𝑦𝑦𝑔𝑔𝑑𝑑 ,𝜊𝜊𝑦𝑦𝑔𝑔𝑑𝑑             ∀𝑦𝑦 ,∀𝑔𝑔𝑑𝑑 ∈  𝐺𝐺𝐺𝐺𝐷𝐷   (67) 

𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝ℎ ≤ 𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑 ≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝ℎ                  ∶ 𝜇𝜇𝑆𝑆���𝑦𝑦𝑟𝑟ℎ𝑑𝑑, 𝜇𝜇𝑆𝑆𝑦𝑦𝑟𝑟ℎ𝑑𝑑     ∀𝑦𝑦𝑝𝑝,∀ℎ𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷 (68) 

0  ≤    𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑                                                                 ∶ 𝜀𝜀𝑦𝑦𝑟𝑟ℎ𝑑𝑑                  ∀𝑦𝑦𝑝𝑝,∀ℎ𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷 (69) 

𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑓𝑓𝑑𝑑 = 𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦,𝑟𝑟−1,ℎ𝑓𝑓,𝑑𝑑 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦=1,𝑟𝑟=1,ℎ𝑓𝑓,𝑑𝑑 −  𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟ℎ𝑓𝑓𝑑𝑑 + 𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑓𝑓𝑑𝑑 

 ∶ 𝜓𝜓𝑦𝑦𝑟𝑟ℎ𝑑𝑑            ∀ℎ𝑓𝑓𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷,∀𝑦𝑦𝑝𝑝, 𝑝𝑝 < 𝑝𝑝𝑓𝑓   
(70) 

 
𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑡𝑡𝑑𝑑 = 𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦,𝑤𝑤,𝑟𝑟−𝑀𝑀,ℎ𝑡𝑡,𝑑𝑑 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦=1,𝑟𝑟=1,ℎ𝑡𝑡,𝑑𝑑  

+� ��𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟′′ℎ𝑡𝑡𝑑𝑑 − 𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟′′ℎ𝑡𝑡𝑑𝑑 −  𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟′′ℎ𝑡𝑡𝑑𝑑 + 𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟′′ℎ𝑡𝑡𝑑𝑑�
𝑟𝑟′′

𝑟𝑟

𝑟𝑟′
    

:𝜓𝜓′
𝑦𝑦𝑟𝑟ℎ𝑑𝑑       ∀ℎ𝑠𝑠,𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷,∀𝑦𝑦𝑝𝑝, 𝑝𝑝 < 𝑝𝑝𝑓𝑓 

 

 

(71) 

 

Equations (60), (64), (72), (67)-(69) represent upper and lower bounds of the existing 
elements of the system. While equations (62) and (65) represent the lower bounds of 
the candidate new elements in the system. Equations (72) and (73) represent the DC 
formulations of the network for existing lines, while equations (74) - (77) represent the 
DC formulations for new lines. In (74) - (77), a Big M approach has been used to linearize 
the product between investment decisions and angles. Finally, equations (13) and  (14) 
represent the storage balance conditions as proposed in [109]. On the one hand, 
equation (14) is considered for long-term storage i.e. hydro when only interday balance 
is considered. With this equation, reservoir management is followed up across the entire 
year, as opposed to the rest of constraints in which only intraday operations are 
included. For the hydro case the parameter pInflow represents the water inflows in the 
year (in energy), vCon represents pumping decisions and vProd the production decisions 
of the hydro unit. On the other hand, equations (14) and (13) are jointly considered to 
represent short-term storage when intraday operation is relevant i.e. batteries. In this 
case, we do a daily energy balance of the battery but also a i.e weekly balance to 
consider the transition between the representative days. For batteries, pInflow is set to 
0, and vCon and vProd represent charging and discharging of the battery. While the 
detailed formulation and explanation of this representation of storage is presented in 
[23], we briefly explain it here for clarity. 

The reservoir energy balance is verified for a given time window. For instance, consider 
4 representative periods, a 168 hour (one week) window and two weeks as shown in 
Figure 13. Thus, the reservoir balance equation (14) will be verified at the end of every 
week e.g. at M1 and M2. Thus, the interday balance is the sum of inflows and 
consumption minus spillage and production for every “representative hour” (p’’), which 
represents each hour of the year (p’). In addition, they are summed over the window M 
until hour (𝑝𝑝 ∈ 𝑃𝑃𝑠𝑠). Please note that 𝐻𝐻(𝑝𝑝′′,𝑝𝑝′) maps each hour of the year to its 
corresponding hour in the appropriate representative day (i.e the first 24 hours of the 
year can be represented by hours 5545-5568 of RP4), and is not to be confused with 
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Γ𝑟𝑟𝑟𝑟,𝑟𝑟 that tells us which hours of the year are the representative ones (i.e RP4 is made 
of hours 5545-5568). 

 

 

 

TSO problem  

 

We assume that the (TSO) that wants to maximize congestions rents from price 
differences.  

𝑀𝑀𝑟𝑟𝑔𝑔 Maximize
𝑣𝑣𝑣𝑣𝑝𝑝𝑣𝑣𝑤𝑤𝑡𝑡𝑦𝑦𝑟𝑟𝑦𝑦𝑦𝑦′ ,𝑣𝑣𝑣𝑣ℎ𝑔𝑔𝑡𝑡𝐵𝐵𝑦𝑦𝑟𝑟𝑦𝑦

� ( 𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑∈(𝐺𝐺𝑔𝑔𝐺𝐺) −  𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑′∈(𝐺𝐺𝑔𝑔𝐺𝐺))  ∗ 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′
𝑦𝑦,𝑟𝑟,𝑑𝑑

 

s.t  
𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′ ≥ 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ ≥ −𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′ ∶  𝜙𝜙�𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′  ,𝜙𝜙𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′∀(𝑑𝑑,𝑑𝑑′) ∈ 𝜕𝜕𝐺𝐺,∀𝑦𝑦𝑝𝑝  (72) 

𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ = 𝑝𝑝𝑆𝑆𝑝𝑝 ∗
𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑟𝑟𝑑𝑑 − 𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆ℎ𝑀𝑀𝑦𝑦𝑟𝑟𝑑𝑑′

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑′
                 ∶ 𝜙𝜙𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′      ∀(𝑑𝑑,𝑑𝑑′) ∈ 𝜕𝜕𝐺𝐺,∀𝑦𝑦𝑝𝑝 (73) 

𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ ≥ −𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′ ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′                ∶  𝜁𝜁𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′     ∀(𝑑𝑑,𝑑𝑑′) ∈ 𝜕𝜕𝐺𝐺,∀𝑦𝑦𝑝𝑝 (74) 

−𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ ≥ −�  𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′ ∗  𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′    � ∶  𝜁𝜁�̅�𝑦𝑟𝑟𝑑𝑑𝑑𝑑′    ∀(𝑑𝑑,𝑑𝑑′)  ∈ 𝜕𝜕𝐺𝐺,∀𝑦𝑦𝑝𝑝 (75) 

 

−𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ ≥ �−𝑝𝑝𝑆𝑆𝑝𝑝 ∗
𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑟𝑟𝑑𝑑 − 𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆ℎ𝑀𝑀𝑦𝑦𝑟𝑟𝑑𝑑′

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑′
− 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′�1 − 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′�� 

∶ 𝜏𝜏�̅�𝑦𝑟𝑟𝑑𝑑𝑑𝑑′                    ∀(𝑑𝑑,𝑑𝑑′)  ∈ 𝜕𝜕𝐺𝐺,∀𝑦𝑦𝑝𝑝  

(76) 

Figure 13: Interday Energy Balance 
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𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ ≥ �𝑝𝑝𝑆𝑆𝑝𝑝 ∗
𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑟𝑟𝑑𝑑 − 𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆ℎ𝑀𝑀𝑦𝑦𝑟𝑟𝑑𝑑′

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑′
− 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′�1 − 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′�� 

∶ 𝜏𝜏𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′                    ∀(𝑑𝑑,𝑑𝑑′)  ∈ 𝜕𝜕𝐺𝐺,∀𝑦𝑦𝑝𝑝  

(77) 

Market Clearing  

� 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑
𝑔𝑔𝑔𝑔𝐺𝐺𝑔𝑔𝐺𝐺

+ � 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑
𝑔𝑔𝑔𝑔𝐺𝐺𝑔𝑔𝐺𝐺

+ � 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′
𝑑𝑑′𝑔𝑔𝐿𝐿𝑔𝑔

− � 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑′𝑑𝑑
𝑑𝑑′𝑔𝑔𝐿𝐿𝑔𝑔

+ �
𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑

𝑝𝑝𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑦𝑦ℎ𝑔𝑔𝐺𝐺𝜖𝜖𝐺𝐺𝑔𝑔𝑔𝑔𝐺𝐺𝑔𝑔𝐺𝐺
= 𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦𝑟𝑟𝑑𝑑                     ∶ 𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑                                ∀𝑦𝑦, 𝑝𝑝,𝑑𝑑   

(78) 

The simultaneous consideration of the GENCO, TSO, and market clearing condition represent 
the wholesale market for the case of perfect and imperfect competition (depending on the 
conjectural variation described in 0). 

KKT Conditions  

An equivalent formulation for the lower level optimization problem is presented. KKT 
conditions are the following:  

• Primal feasibility conditions. TSO: (72) - (77) MC: (78) Gencos: (60) - (14)    
• Dual feasibility conditions.    TSO: (79) - (80) and Gencos: (81) - (87)   
• Complementary slackness conditions26 

Dual feasibility conditions:  (Each equation is defined for 𝑝𝑝 ∈ Γ𝑟𝑟𝑟𝑟,𝑟𝑟, except for equations  

(83) to (87). 

 

                                                      
26 Linearized conditions can be found in ANNEX 

𝜙𝜙𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′∈𝐿𝐿𝐿𝐿(𝑑𝑑,𝑑𝑑′) + 𝜙𝜙𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′∈𝐿𝐿𝐿𝐿(𝑑𝑑,𝑑𝑑′) − 𝜙𝜙�𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′∈𝐿𝐿𝐿𝐿�𝑑𝑑,𝑑𝑑′� + 𝜁𝜁𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′∈𝐿𝐿𝐺𝐺�𝑑𝑑,𝑑𝑑′�  − 𝜁𝜁�̅�𝑦𝑟𝑟𝑑𝑑𝑑𝑑′∈𝐿𝐿𝐺𝐺�𝑑𝑑,𝑑𝑑′�

+ 𝜏𝜏�̅�𝑦𝑟𝑟𝑑𝑑𝑑𝑑′∈𝐿𝐿𝐺𝐺�𝑑𝑑,𝑑𝑑′� −  𝜏𝜏𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′∈𝐿𝐿𝐺𝐺�𝑑𝑑,𝑑𝑑′� + 𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑′∈(𝐺𝐺𝑔𝑔𝐺𝐺) − 𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑∈(𝐺𝐺𝑔𝑔𝐺𝐺)   = 0
∶ 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′   ∀𝑦𝑦𝑝𝑝𝑑𝑑𝑑𝑑′ 

 

(79) 

�
𝑝𝑝𝑆𝑆𝑝𝑝

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑′
∗ 𝜙𝜙𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′

𝑑𝑑∈𝐿𝐿𝐿𝐿(𝑑𝑑,𝑑𝑑′)

− �
𝑝𝑝𝑆𝑆𝑝𝑝

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑′𝑑𝑑
∗ 𝜙𝜙𝑦𝑦𝑟𝑟𝑑𝑑′𝑑𝑑

𝑑𝑑′∈𝐿𝐿𝐿𝐿(𝑑𝑑,𝑑𝑑′)

+ �
𝑝𝑝𝑆𝑆𝑝𝑝

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑′
∗ 𝜏𝜏�̅�𝑦𝑟𝑟𝑑𝑑𝑑𝑑′

𝑑𝑑∈𝐿𝐿𝐺𝐺(𝑑𝑑,𝑑𝑑′)

− �
𝑝𝑝𝑆𝑆𝑝𝑝

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑′
∗ 𝜏𝜏𝑦𝑦𝑟𝑟𝑑𝑑′𝑑𝑑

𝑑𝑑′∈𝐿𝐿𝐺𝐺(𝑑𝑑,𝑑𝑑′)

− �
𝑝𝑝𝑆𝑆𝑝𝑝

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑′𝑑𝑑
∗ 𝜏𝜏�̅�𝑦𝑟𝑟𝑑𝑑′𝑑𝑑

𝑑𝑑′∈𝐿𝐿𝐺𝐺(𝑑𝑑′,𝑑𝑑)

+ �
𝑝𝑝𝑆𝑆𝑝𝑝

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑′𝑑𝑑
∗ 𝜏𝜏𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′

𝑑𝑑∈𝐿𝐿𝐺𝐺(𝑑𝑑,𝑑𝑑′)
= 0 ∶  𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑟𝑟𝑑𝑑 ,∀𝑦𝑦𝑝𝑝𝑑𝑑 

 

 

(80) 
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Please note that all the previous equations are linear, therefore the only nonlinearities 
are those introduced by the complementarity conditions. Consequently, this set of KKT 
conditions can be solved either as an NLP or formulated and solved as an MPEC. 
Nevertheless, we can only guarantee to find a local optimum when solving NLP or MPEC 
and, in some cases, no solution might be found. In order to tackle the limitations of this 
approach, a bi-level MILP problem is formulated to obtain a global optimum solution.  

Linearized Complementarities 

 

�(𝑌𝑌 − 𝑦𝑦 + 1) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑔𝑔
𝑔𝑔𝑦𝑦𝑑𝑑

+ �(𝑌𝑌 − 𝑦𝑦 + 1) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑔𝑔
𝑔𝑔𝑦𝑦𝑑𝑑

+ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔 ∗ 𝜔𝜔�𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 + 𝛽𝛽𝑦𝑦𝑔𝑔𝑑𝑑

− 𝛽𝛽𝑦𝑦+1,𝑔𝑔𝑑𝑑   − �̅�𝜊𝑦𝑦𝑔𝑔𝑑𝑑 + 𝜊𝜊𝑦𝑦𝑔𝑔𝑑𝑑      = 0 ∶ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑   ∀𝑦𝑦𝑔𝑔𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷 

 

(81) 

−𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦𝑟𝑟𝑑𝑑 + 𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑑𝑑 − 𝑝𝑝𝑆𝑆𝑝𝑝𝑡𝑡𝑝𝑝𝑆𝑆 ∗ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑡𝑡𝑑𝑑 = 0 ∶ 𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦𝑟𝑟𝑑𝑑   ∀𝑦𝑦𝑔𝑔𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷 (82) 

For equations  

(83) to (87) we define 𝑝𝑝′′ = 𝑝𝑝′ + 1 −𝑀𝑀 𝑃𝑃𝑀𝑀 = �𝑝𝑝|𝑝𝑝 ∈ Γ𝑟𝑟𝑟𝑟,𝑟𝑟�, 𝑃𝑃𝑠𝑠 = �𝑝𝑝𝑠𝑠| 𝑟𝑟𝑡𝑡
𝑀𝑀
∈ 𝑍𝑍+� ,

𝑀𝑀𝑝𝑝𝑑𝑑 𝑃𝑃𝑆𝑆 = 𝑃𝑃𝑠𝑠 ∪  𝑃𝑃𝑀𝑀 

� � 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟 ∗ (−𝐹𝐹𝑆𝑆𝑆𝑆𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑡𝑡𝑟𝑟
𝑦𝑦,(𝑟𝑟,𝑟𝑟𝑟𝑟)∈Γ𝑟𝑟𝑟𝑟,𝑟𝑟,𝑑𝑑

+ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑡𝑡𝑑𝑑 ∗
𝜕𝜕𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑∈(𝐺𝐺𝑔𝑔𝐺𝐺)

𝜕𝜕𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔
)� + 𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑∈(𝐺𝐺𝑔𝑔𝐺𝐺)

−  �̅�𝜌𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑∈(𝐺𝐺𝐿𝐿𝐺𝐺) + 𝜌𝜌𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑∈(𝐺𝐺𝐿𝐿𝐺𝐺) − 𝜔𝜔�𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑∈(𝐺𝐺𝐺𝐺𝐺𝐺) + 𝜔𝜔𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑∈(𝐺𝐺𝐿𝐿𝐺𝐺)

+ � �𝜓𝜓𝑦𝑦𝑟𝑟ℎ�
𝑟𝑟′

𝑟𝑟′′
= 0   

 ∶ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑     ∀𝑦𝑦, ℎ𝑑𝑑 ∈  (𝐺𝐺𝐺𝐺𝐷𝐷) ∀𝑝𝑝′ ∈ 𝐻𝐻(𝑝𝑝′, 𝑝𝑝) /   𝑝𝑝 ∈ 𝑃𝑃𝑀𝑀,  𝑝𝑝′ ∈  𝑃𝑃𝑠𝑠 

 

 

(83) 

�̅�𝜅𝑦𝑦𝑟𝑟ℎ𝑑𝑑 − 𝜅𝜅𝑦𝑦𝑔𝑔𝑟𝑟ℎ𝑑𝑑 + 𝜓𝜓𝑦𝑦𝑟𝑟ℎ𝑓𝑓𝑑𝑑 + � �𝜓𝜓′
𝑦𝑦𝑟𝑟ℎ�

𝑟𝑟′

𝑟𝑟′′
= 0 

: 𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑     ∀𝑝𝑝′ ∈ 𝐻𝐻(𝑝𝑝′, 𝑝𝑝), 𝑝𝑝 ∈ 𝑃𝑃𝑀𝑀,  𝑝𝑝′ ∈  𝑃𝑃𝑠𝑠,∀𝑦𝑦, ℎ𝑑𝑑 ∈  (𝐺𝐺𝐺𝐺𝐷𝐷) 

 

(84) 

−𝜇𝜇𝑦𝑦𝑟𝑟ℎ𝑑𝑑 + 𝜇𝜇𝑦𝑦𝑟𝑟ℎ𝑑𝑑 + � 𝜓𝜓𝑦𝑦𝑟𝑟ℎ
𝑟𝑟′

𝑟𝑟′′
= 0 

: 𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑     ∀𝑝𝑝′ ∈ 𝐻𝐻(𝑝𝑝′, 𝑝𝑝)  𝑝𝑝 ∈ 𝑃𝑃𝑀𝑀,  𝑝𝑝′ ∈  𝑃𝑃𝑠𝑠,∀𝑦𝑦, ℎ𝑑𝑑 ∈  (𝐺𝐺𝐺𝐺𝐷𝐷) 

 

 

(85) 

𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑∈(𝐺𝐺𝑔𝑔𝐺𝐺) + 𝜌𝜌𝑝𝑝����𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 ,𝜌𝜌𝑝𝑝𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑  ∀𝑦𝑦𝑝𝑝𝑝𝑝𝑑𝑑 ∈  (𝐺𝐺𝐺𝐺𝐷𝐷) (86) 

−�̅�𝜇𝑦𝑦𝑟𝑟ℎ𝑑𝑑 + 𝜇𝜇𝑦𝑦𝑟𝑟ℎ𝑑𝑑 + 𝜓𝜓𝑦𝑦𝑟𝑟∈𝑣𝑣𝐵𝐵,ℎ𝑓𝑓𝑑𝑑 + 𝜓𝜓𝑦𝑦,𝑟𝑟+1∈𝑣𝑣𝐵𝐵,ℎ𝑓𝑓𝑑𝑑 + 𝜓𝜓′
𝑦𝑦𝑟𝑟∈𝑣𝑣𝑡𝑡,ℎ𝑑𝑑 − 𝜓𝜓′

𝑦𝑦,𝑟𝑟+𝑀𝑀|𝑟𝑟∈𝑣𝑣𝑡𝑡 ,ℎ𝑑𝑑 = 0  

: 𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑∀𝑝𝑝 ∈ 𝑃𝑃𝑆𝑆,∀𝑦𝑦ℎ𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷 

(87) 
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Each set of equation corresponds to the linearization of a complementarity condition. 
Please note that equality constrains do not need a complementarity condition. We 
denote 𝑀𝑀𝑑𝑑𝑆𝑆𝑀𝑀𝑝𝑝,����������𝑀𝑀𝑑𝑑𝑆𝑆𝑀𝑀𝑝𝑝 as the big M parameters corresponding to each dual variable for 
upper and lower bounds respectively. 𝑌𝑌𝑑𝑑𝑆𝑆𝑀𝑀𝑝𝑝��������,  𝑌𝑌𝑑𝑑𝑆𝑆𝑀𝑀𝑝𝑝 refer to binary variables 
corresponding to each dual variable for upper and lower bounds respectively. 
Additionally, we implement a regularization method to compute Big Ms as proposed in 
[100]. 

 
𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 ≤ 𝑀𝑀𝜌𝜌 ∗  𝑌𝑌𝜌𝜌𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑   

𝜌𝜌𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 ≤ 𝑀𝑀𝜌𝜌 ∗ �1 − 𝑌𝑌𝜌𝜌𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑� 

𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 − 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔 ≤  𝑀𝑀𝜌𝜌���� ∗  𝑌𝑌𝜌𝜌����𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑   
 0 ≤ �̅�𝜌𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 ≤  𝑀𝑀𝜌𝜌���� ∗  𝑌𝑌𝜌𝜌����𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑              

 

 

   ∀𝑔𝑔𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷, 

 ∀𝑦𝑦𝑝𝑝 

 

(88) 

𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑦𝑦𝑟𝑟𝑤𝑤𝑑𝑑 ≤ 𝑀𝑀𝜌𝜌𝑝𝑝 ∗  𝑌𝑌𝜌𝜌𝑝𝑝𝑦𝑦𝑟𝑟𝑤𝑤𝑑𝑑    

𝜌𝜌𝑝𝑝𝑦𝑦𝑟𝑟𝑤𝑤𝑑𝑑  ≤ 𝑀𝑀𝜌𝜌𝑝𝑝 ∗ �1 − 𝑌𝑌𝜌𝜌𝑝𝑝𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑� 

𝜌𝜌𝑝𝑝����𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 ≤ 𝑀𝑀𝜌𝜌𝑝𝑝������� ∗  𝑌𝑌𝜌𝜌𝑝𝑝������𝑦𝑦𝑟𝑟𝑤𝑤𝑑𝑑   
𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑦𝑦𝑟𝑟𝑤𝑤𝑑𝑑 − 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑤𝑤𝑟𝑟 ≤ 𝑀𝑀𝜌𝜌𝑝𝑝������� ∗  𝑌𝑌𝜌𝜌����𝑦𝑦𝑟𝑟𝑤𝑤𝑑𝑑  

 

 

∀𝑝𝑝𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷, 

 ∀𝑦𝑦𝑝𝑝 

 

 

(89) 

0 ≤  𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 ≤ 𝑀𝑀𝜔𝜔 ∗  𝑌𝑌𝜔𝜔𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 
 0 ≤  𝜔𝜔𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑    ≤ 𝑀𝑀𝜔𝜔 ∗ (1 −  𝑌𝑌𝜔𝜔𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑) 

 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 − 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔 ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑 ≤ 𝑀𝑀𝜔𝜔����� ∗  𝑌𝑌𝜔𝜔����𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑    
 𝜔𝜔�𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 ≤ 𝑀𝑀𝜔𝜔����� ∗  𝑌𝑌𝜔𝜔����𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑    

 

 
  

  ∀𝑔𝑔𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷, 
∀𝑦𝑦𝑝𝑝 

 
 

(90) 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑦𝑦𝑟𝑟𝑤𝑤𝑑𝑑 − 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑟𝑟𝑤𝑤𝑑𝑑 ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑤𝑤𝑑𝑑 ≤ 𝑀𝑀𝜔𝜔𝑝𝑝 ∗  𝑌𝑌𝜔𝜔𝑝𝑝𝑦𝑦𝑝𝑝𝑝𝑝𝑑𝑑   

𝜔𝜔𝑝𝑝𝑦𝑦𝑟𝑟𝑤𝑤𝑑𝑑   ≤ 𝑀𝑀𝜌𝜌𝑝𝑝 ∗ �1 − 𝑌𝑌𝜔𝜔𝑝𝑝𝑦𝑦𝑟𝑟𝑤𝑤𝑑𝑑� 

𝜌𝜌𝑝𝑝����𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 ≤ 𝑀𝑀𝜌𝜌𝑝𝑝������� ∗  𝑌𝑌𝜌𝜌𝑝𝑝������𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑   
𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑦𝑦𝑟𝑟𝑤𝑤𝑑𝑑 − 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑤𝑤𝑟𝑟 ≤ 𝑀𝑀𝜌𝜌𝑝𝑝������� ∗  𝑌𝑌𝜌𝜌����𝑦𝑦𝑟𝑟𝑤𝑤𝑑𝑑  

 

∀𝑝𝑝𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷 

 ∀yp 

 

(91) 

𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝ℎ − 𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑 ≤  𝑀𝑀𝜇𝜇𝑆𝑆 ∗  𝑌𝑌𝜇𝜇𝑆𝑆𝑦𝑦𝑟𝑟ℎ𝑑𝑑         
𝜇𝜇𝑆𝑆𝑦𝑦𝑟𝑟ℎ ≤  𝑀𝑀𝜇𝜇𝑆𝑆 ∗  (1 − 𝑌𝑌𝜇𝜇𝑆𝑆𝑦𝑦𝑟𝑟ℎ𝑑𝑑) 

𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑 − 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝ℎ  ≤  𝑀𝑀𝜇𝜇𝑆𝑆������� ∗  𝑌𝑌𝜇𝜇����𝑦𝑦𝑟𝑟ℎ𝑑𝑑   
 𝜇𝜇𝑆𝑆���𝑦𝑦𝑟𝑟ℎ ≤  𝑀𝑀𝜇𝜇����� ∗ (1 −  𝑌𝑌𝜇𝜇����𝑦𝑦𝑟𝑟ℎ𝑑𝑑 ) 

 

 

∀𝑔𝑔𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷, 

∀𝑦𝑦𝑝𝑝 

 
 

(92) 

𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝ℎ ≤  𝑀𝑀𝜇𝜇𝑆𝑆 ∗  𝑌𝑌𝜇𝜇𝑆𝑆𝑦𝑦𝑟𝑟ℎ𝑑𝑑          
𝜇𝜇𝑆𝑆𝑦𝑦𝑟𝑟ℎ ≤  𝑀𝑀𝜇𝜇𝑆𝑆 ∗  (1 − 𝑌𝑌𝜇𝜇𝑆𝑆𝑦𝑦𝑟𝑟ℎ𝑑𝑑) 

𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑 − 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑ℎ ∗ 𝐺𝐺𝑇𝑇𝐷𝐷 ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦ℎ𝑑𝑑  ≤  𝑀𝑀𝜇𝜇𝑆𝑆������ ∗  𝑌𝑌𝜇𝜇����𝑦𝑦𝑟𝑟ℎ𝑑𝑑  
 𝜇𝜇𝑆𝑆���𝑦𝑦𝑟𝑟ℎ ≤  𝑀𝑀���𝑆𝑆 ∗ (1 −  𝑌𝑌𝜇𝜇����𝑦𝑦𝑟𝑟ℎ𝑑𝑑 ) 

 

 

∀𝑔𝑔𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷, 

∀𝑦𝑦𝑝𝑝 

 
 
 

(93) 
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𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑
𝑝𝑝𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑦𝑦ℎ

≤ 𝑀𝑀𝜅𝜅𝑆𝑆 ∗  𝑌𝑌𝜅𝜅𝑆𝑆𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑   

𝜅𝜅𝑆𝑆𝑦𝑦ℎ𝑟𝑟𝑑𝑑 ≤ 𝑀𝑀𝜅𝜅𝑆𝑆 ∗ (1 −  𝑌𝑌𝜅𝜅𝑆𝑆𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑 )   
𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑

𝑝𝑝𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑦𝑦ℎ
− 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐺𝐺𝑡𝑡𝑝𝑝𝑠𝑠ℎ ≤  𝑀𝑀𝜅𝜅𝑆𝑆������ ∗  𝑌𝑌𝜅𝜅𝑆𝑆�����𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑  

�̅�𝜅𝑦𝑦ℎ𝑟𝑟𝑑𝑑 ≤ 𝑀𝑀𝜅𝜅���� ∗ (1 − 𝑌𝑌𝜅𝜅����𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑)  
 

 

    ∀ℎ𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷,  

∀𝑦𝑦𝑝𝑝 

 

(94) 

𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑
𝑝𝑝𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑦𝑦ℎ

≤ 𝑀𝑀𝜅𝜅𝑆𝑆 ∗  𝑌𝑌𝜅𝜅𝑆𝑆𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑   

𝜅𝜅𝑆𝑆𝑦𝑦ℎ𝑟𝑟𝑑𝑑 ≤ 𝑀𝑀𝜅𝜅𝑆𝑆 ∗ (1 −  𝑌𝑌𝜅𝜅𝑆𝑆𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑  )   
𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑

𝑝𝑝𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑦𝑦ℎ
− 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝ℎ ∗ 𝐺𝐺𝑇𝑇𝐷𝐷 ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦ℎ𝑑𝑑 ≤   𝑀𝑀𝜅𝜅𝑆𝑆������ ∗  𝑌𝑌𝜅𝜅𝑆𝑆������𝑦𝑦𝑝𝑝𝑔𝑔𝑑𝑑 

�̅�𝜅𝑦𝑦ℎ𝑟𝑟𝑑𝑑 ≤ 𝑀𝑀𝜅𝜅𝑆𝑆������ ∗ (1 − 𝑌𝑌𝜅𝜅𝑆𝑆�����𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑)  
 

 

∀𝑔𝑔𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷, 

∀𝑦𝑦𝑝𝑝 

 

 
(95) 

−𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦−1,𝑔𝑔𝑑𝑑 − 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑 ≤ 𝑀𝑀𝛽𝛽 ∗  𝑌𝑌𝛽𝛽𝑦𝑦𝑔𝑔𝑑𝑑   
𝛽𝛽𝑦𝑦𝑔𝑔𝑑𝑑 ≤  𝑀𝑀𝛽𝛽 ∗ (1 − 𝑌𝑌𝛽𝛽𝑦𝑦𝑔𝑔𝑑𝑑   ) 

 

∀𝑔𝑔𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷, 

∀𝑦𝑦𝑝𝑝 

(96) 

𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑 ≤   𝑀𝑀𝜊𝜊 ∗  𝑌𝑌𝜊𝜊𝑦𝑦𝑔𝑔𝑑𝑑    
�̅�𝜊𝑦𝑦𝑔𝑔𝑑𝑑 ≤   𝑀𝑀𝜊𝜊 ∗ (1 −  𝑌𝑌𝜊𝜊𝑦𝑦𝑔𝑔𝑑𝑑   ) 

𝑀𝑀𝑀𝑀𝑥𝑥𝐺𝐺𝑆𝑆𝑝𝑝𝑔𝑔 − 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑   ≤   𝑀𝑀𝜊𝜊 ∗  𝑌𝑌𝜊𝜊𝑦𝑦𝑔𝑔𝑑𝑑       
�̅�𝜊𝑦𝑦𝑔𝑔𝑑𝑑 ≤   𝑀𝑀𝜊𝜊����� ∗ (1 −  𝑌𝑌𝜊𝜊����𝑦𝑦𝑔𝑔𝑑𝑑  )  

 

∀𝑔𝑔𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷, 

∀𝑦𝑦𝑝𝑝 

 

(97) 

−𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ + 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′ ≤  𝑀𝑀𝜙𝜙 ∗  𝑌𝑌𝜙𝜙𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′  

𝜙𝜙𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ ≤   𝑀𝑀𝜙𝜙 ∗ (1 −  𝑌𝑌𝜙𝜙𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′) 

−𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ − 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′  ≤    𝑀𝑀𝜙𝜙����� ∗  𝑌𝑌𝜙𝜙����𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′       
−𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ − 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′  ≤    𝑀𝑀𝜙𝜙����� ∗ (1 −  𝑌𝑌𝜙𝜙����𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′)     

 

 

∀(𝑑𝑑,𝑑𝑑′) ∈ 𝜕𝜕𝐺𝐺, 

∀𝑦𝑦𝑝𝑝 

 

(98) 

𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ + 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′ ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′ ≤  𝑀𝑀𝜁𝜁 ∗  𝑌𝑌𝜁𝜁𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′  
𝜁𝜁𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ ≤  𝑀𝑀𝜁𝜁 ∗ (1 − 𝑌𝑌𝜁𝜁𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′) 

∀(𝑑𝑑,𝑑𝑑′) ∈ 𝜕𝜕𝐺𝐺, 

∀𝑦𝑦𝑝𝑝 

(99) 

−𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ + �  𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′ ∗  𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′    �
≤  𝑀𝑀𝜁𝜁����� ∗  𝑌𝑌𝜁𝜁���𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′     

𝜁𝜁�̅�𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ ≤  𝑀𝑀𝜁𝜁����� ∗ (1 −  𝑌𝑌𝜁𝜁���𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′  )  

∀(𝑑𝑑,𝑑𝑑′)  ∈ 𝜕𝜕𝐺𝐺, 

∀𝑦𝑦𝑝𝑝 
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−𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ + �
𝑝𝑝𝑆𝑆𝑝𝑝 ∗

𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑟𝑟𝑑𝑑 − 𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆ℎ𝑀𝑀𝑦𝑦𝑟𝑟𝑑𝑑′
𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑′

+𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′�−1 + 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′�  
�

≤   𝑀𝑀𝜏𝜏����� ∗  𝑌𝑌𝜏𝜏���𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′  
𝜏𝜏�̅�𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ ≤   𝑀𝑀𝜏𝜏����� ∗ (1 − 𝑌𝑌𝜏𝜏���𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′  )  

 

∀(𝑑𝑑,𝑑𝑑′)  ∈ 𝜕𝜕𝐺𝐺, 

∀𝑦𝑦𝑝𝑝 
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−𝑝𝑝𝑆𝑆𝑝𝑝 ∗

𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ − 𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆ℎ𝑀𝑀𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′
𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑′

−𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′�1 − 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′�
�

≤   𝑀𝑀𝜏𝜏 ∗  𝑌𝑌𝜏𝜏𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′                
𝜏𝜏𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ ≤  𝑀𝑀𝜏𝜏 ∗ (1 − 𝑌𝑌𝜏𝜏𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′  ) 

 

∀(𝑑𝑑,𝑑𝑑′)  ∈ 𝜕𝜕𝐺𝐺, 

∀𝑦𝑦𝑝𝑝 
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MILP formulation 

After taking the KKT conditions of the lower level and linearizing the complementarity 
conditions we end up with MIP problem which can be solved by commercial softwares. 
These complete problem is therefore composed of the following equations: 

 

 

 

 

 

Case Study 

In this Section we present an illustrative case study, in Section 0 we present the data of 
our illustrative system, in Section 0 we present the market operation and capacity 
expansion results and finally, in Section 0 we investigate the results for storage 
technologies.  

Data 

The system as shown in Figure 14, is composed of 4 nodes, with demand in each node. 
We consider 3 generation companies (C2, C3, C4), 3 existing generators, and 2 candidate 
generators for companies C2 and C3 (candidate generator in node 1 belongs to C3 and 
candidate generator in node 2 belongs to company 2).  
 

 

 

 

  

 

 

Node Max/Min 
(MWh) 

GENCO 
(g, tec) 

Fuel Cost 
(€/MWh) 

Capacity 
(MW) 

1 572/303 (C2,CCGT) 31 550 
2 286/151 (C3,Coal) 54 588 
3 429/227 (C4,Hydro) 0 500 
4 429/227 -   

 Reservoir 
(GWh) 

Inflows (MWh) 

 Max Min Max Min 
Hydro 240 60 0.8 0.1 

Objective function (51) 
Subject to:  
Upper level constraints:             (52) - (55) 
Primal feasibility constraints:    (60) - (14) 
Dual feasibility constraints:       (79) - (87) 
Linearized complementarities: (89) - (102) 
 
 

 

4 

3 

2 
1 
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Figure 14: System Characteristics 

 

For the network configuration, we consider two scenarios: Green-Field Scenario (GF): In 
this scenario, we assume that no network is in place and investments have to be done 
from scratch. Brown-Field Scenario (BF): In this scenario, we have the network depicted 
in Figure 14. Therefore, we have 2 existing and 3 candidate lines. Continuous lines in 
Figure 14 represent existing units and existing transmission lines. Dotted lines represent 
candidate units and candidate transmission lines. We also include fuel cost and capacity 
of the existing generators. Additionally, for the hydro unit we have the maximum and 
minimum reserve levels of the hydro reservoir as well and the maximum and minimum 
hourly inflows into the reservoir. Finally, to keep this case study simple we disregard 
wind spillages and we consider a net total demand.  

In Table XIV and Table XV we can find the operation and investment cost of candidate 
units and lines (we include all lines as candidates for GF case) as well as their location 
and maximum capacity. Additionally, for this study case, 4 representative days (24 hours 
each) are chosen, a window of 168 h is selected and the model is run for a 1-year horizon. 
We chose 4 days based on the study done in [45], where a comparison of CPU time 
compared to objective function error was done for a different number of representative 
days. Compared to their study we chose less days because of the complexity introduced 
by Big-M constraints into bi-level models. Additionally, the model is generic and can be 
solved for a multi-year horizon, however, given the complexities of bi-level models and 
the new formulation for long and short-term storage, we decided to consider only 1 year 
to focus in depth on the basic planning results. 

 
Table XIV: Candidate Lines 

From 
Node 

To 
Node 

Reactance 
[p.u] 

Annual Inv 
Cost (M€) 

Capacity 
(MW) 

3 4 0.03 0.375 200 
1 2 0.03 0.375 200 
1 4 0.03 0.375 200 
2 3 0.03 0.375 200 
2 4 0.03 0.375 200 

 
Table XV: Candidate Generators 

 

 

 

(G, TEC)   Node Annual Inv Cost 
[k€/MW] 

Fuel Cost 
(€/MWh) 

Capacity  
(MW) 

(C2,CCGT) 2 29 27 667 
(C3,CCGT) 1 40 28 500 
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Additionally, we consider two different competition cases both from GF and BF 
scenarios. We consider the Perfect Competition (PC) case with 𝜃𝜃𝑔𝑔 = 0  and the Cournot 
Oligopoly (CO) case with 𝜃𝜃𝑔𝑔 = 0.008, please see Section 0. The model is coded in GAMS, 
solved with GUROBI and run on a computer with 3.4 GHz processor and 32 GB of RAM. 
For the GFS the PC case takes 145 s and the CO case 2000 s with a 0% integrality gap. 
For the BF case the PC model takes 969s and CO takes 1158s for a 1% integrality gap27.  

Operation and Investment Results 

 
First, we analyze investment decisions. Table XVI and  

Table XVII show transmission and generation capacity expansion. First of all, we 
observe that the degree of competition in the market affects optimal TEP decisions. 
This indicates that a bi-level model provides insights that a single-level model is not 

able to yield. Moreover, in Table XVI and  

Table XVII we can see that for both GF and BF scenarios capacity expansion is higher in 
the PC case compared to the CO case. This is reasonable because, in a perfectly 
competitive environment, GENCOs cannot react strategically because they do not have 
market power and therefore the TSO tends to overinvest to guarantee lower operational 
costs. Inversely, in a Cournot oligopoly framework, GENCOs have market power and 
tend to underinvest in order to increase their profits, a phenomenon observed often 
[110],[111]. Please note that in the CO case the generator at node 1 remains isolated, 
this is a direct consequence of the elasticities chosen at each node. If a less elastic 
demand was chosen at node 1, the model would decide to connect it to the network. 
Below we will analyze system costs and efficiency by introducing the welfare measure.  

Table XVI: Transmission Expansion 

  Lines 
Invested 

Capacity 
(MW) 

Annual Inv 
Cost (M€) 

GF PC (2-4) (3-2) (3-4) 600 0.37 
 CO (3-2)(3-4) 400 0.75 

                                                      
27 The window highly affects computational time. For BF case we set a 85 hours window, and program runs for 10000 s with only a 
5% gap. 
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BF PC (2-4) (3-2) 400 0.75 
 CO (3-2) 200 0.37 

 

In order to analyze the efficiency of each framework we use the welfare. We compute 
the Social Welfare as the summation of the Consumer Surplus (CS) and the Producer 
Surplus (PS). Please note that the calculation of the CS is the usual expression that results 
from the integral of the utility of the demand.  
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Table XVII: Generation Expansion 

 

 

 

 

 

 

Table XVIII contains the Total Costs of the System (TCS), Operational Costs (OC), System 
Demand (SD) and the Relative Operational Costs per TWh produced (ROC). Table XIX 

  SW 
(M€) 

PS 
(M€) 

RPS 
[p.u] 

TI 
(MW) 

DSI 
(MWh/MW) 

GF PC 1282 294 0.22 1160 7.88 
 CO 1405 394 0.28 945 9.27 

 
 

Generation 
Company 

Generation 
Exp (MW) 

Annual Inv 
Cost (M€) 

GF PC C3, CCGT 560 16.80 
 CO C3, CCGT 545 16.36 

BF PC C2, CCGT 360  
  C3, CCGT 57.5 13.10 
 CO C3, CCGT 350 10.52 
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BF PC 1088 324 0.29 617 10.99 
 CO 1113 379 0.34 550 15.95 

 contains Social Welfare (SW), Producer Surplus (PS), Relative Produce Surplus (RPS), 
Total Investment (TI) and Demand Supplied per MW of Investment (DSI), computed as 
the ratio between SD and TI, for each one of the scenarios and cases. At first glance, we 
obtain some counterintuitive results. For both GF and BF scenarios PC total costs are 
higher than CO total costs, however, as seen in Table XVIII this is mainly true because in 
the PC case more SD is met compared to CO. Therefore, if we compute the ROC, we 
obtain that ROC in PC is lower than in the CO case. This supports the hypothesis, 
mentioned above, that higher investment in PC leads to lower ROC while a lower 
investment in CO leads to higher ROC.   

We can see in Table XIX, surprisingly, that CO welfare is higher than PC welfare. This 
suggests that, for sequential games, the absence of perfect competition in the market 
can be beneficial to society as a whole. In fact, similar results have been observed in 
[111]. Authors in [111] show that, when operation is anticipated by capacity expansion, 
social welfare results are case-dependent and therefore we can obtain cases with higher 
efficiency in Cournot competition than in perfect competition. Even though market 
power increases (seen as producer surplus increases) total welfare is still higher in the 
CO case.  

 For this purpose, we have computed the relative producer surplus (RPS) as the ratio 
between PS and welfare. As seen in Table XIX in both GF and BF cases RPS is greater in 
CO than in PC. This result indicates that more market power can actually be beneficial 
to society depending on the case at hand. This can be explained by the fact that the 
amount of demand supplied by one MW of investment (DSI) is greater in CO than in PC 
case, as seen the last column of Table XVIII. Somehow, the investment that is taken 
under CO is more efficient as it supplies more demand relatively speaking. This fact can 
also be explained by the network effects occurring in a non-arbitrage Cournot spatial 
model as seen in Figure 15. In such a case, flows can be inverted given that, as mentioned 
in [58], the elasticity at some nodes incentivizes generators to reduce prices, and with 
the absence of a marketer this leads to non-cost based price differences. Therefore, this 
may cause that reduced transmission capacity increases welfare in some cases.  

Additionally, the RPS for CO in BF scenario is greater than RPS for CO in GF scenario. This 
can be explained because the given network in BF is not optimal and not perfect, and 
therefore companies are capable of exercising a greater market power.  Moreover, it is 
also true for the inverse case. The relative consumer surplus RCS=(1-RPS) in PC is greater 
than in CO case for both GF and BF scenarios. Additionally, RCS for PC case in GF scenario 
is greater compared to the PC case in BF scenario, in accordance to the fact the PC leads 
to an optimal setting and therefore consumer surplus is greater.                                    

 
Table XVIII: Costs 
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  TSC 
(M€) 

TIC 
(M€) 

OC 
(M€) 

SD 
(TWh) 

SPD 
(GW) 

ROC 
M€/TWh 

GF PC 210 17.2 148 9.15 1.88 16.19 
 CO 191 17.1 144 8.77 1.95 16.49 

BF PC 187 13.9 143 8.99 1.54 16.00 
 CO 172 10.9 146 8.79 1.24 16.66 

 

Table XIX: Welfare 

 
  SW 

(M€) 
PS 

(M€) 
RPS 
[p.u] 

TI 
(MW) 

DSI 
(MWh/MW) 

GF PC 1282 294 0.22 1160 7.88 
 CO 1405 394 0.28 945 9.27 

BF PC 1088 324 0.29 617 10.99 
 CO 1113 379 0.34 550 15.95 

 

 

  

 

Moreover, In Figure 16 we can study how companies’ market share varies in the 
different scenarios. We compute it as the relative production of each company over total 
production. In each scenario, the inner circle refers to the PC case while the outer circle 
refers to the OC case. On the one hand, in GF, the market share of each company under 
PC and CO are very close, strategic behavior does not defers from perfect competition. 
This can be explained because in the GF scenario, the leader TSO decides over most 
capacity and can lead to a closer competitive market under the CO case. On the other 

  PC CO 

  % 
p.u. 

RENT 
  M€ 

% 
p.u.  

RENT 
M€ 

4-2 0 0    
2-3 40 0.001 0 0  
2-1 70 10 100 15  
4-3 0 0  40 3  

Figure 15: Flows Direction and Congestion BrownField 
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hand, the market share changes drastically from PC to OC under BF scenarios. This is due 
to the initial configuration of the network in BF. The fact that in the BF line (1-2) is 
already built (which otherwise would not be) makes company 2 and 3 to be more cost 
efficient. In addition, in the CO case it leads to an increase, of companies 2 and 3, of 
relative market power compared to company 4. 

 

 

 

 

 

 

 

 

 

In Figure 15 we show the directions of the power flow for the Brownfield case. In the 
black upper brackets and the lower red brackets, we present the average prices 
(€/MWh) per node for the PC and the CO case respectively. The arrows in Figure 15 
represent the direction of the flows through the lines. This direction is the same during 
all hours, except for line (4-2) (which is only built in the PC case) where flows appear in 
both directions. In the CO case line (2-3) is never congested, (2-1) is always congested 
and (4-3) is congested 40% of the time of the year. For the PC case lines (4-2) and (4-3) 
are never congested while (2-3) and (2-1) are congested 4% and 75% of the time 
respectively. As we can see, in the PC case lines are less congested and average prices 
are closer. As expected in the PC case, flows on average go from low price nodes to high 
prices nodes. However, in the CO case the direction of power flows are inverse and go 
from high prices to low prices, a counterintuitive results already seen in [58]. As 
mentioned above, this can happen because the elasticity at some nodes incentivizes 
generators to reduce prices, and with the absence of a marketer, this leads to non-cost 
based price difference.  

Storage Results 

Finally, we analyze an additional scenario with storage investment. We take the same 
system configuration as in Figure 14, but we replace the CCGT candidate generator in 
node 1, with a Battery (B) belonging to company 4. We call this new scenario Storage 
Brown Field (SBF) in contrast to the previous Brown Field Scenario with CCGT candidates 

Figure 16: Market Share 
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(now CBF). We consider a battery with 250MWh of installed capacity, 50 MW of 
maximum charge/discharge and investment cost of 400k€/MW. Table XX contains 
Invested Lines (IL), Transmission Capacity Investment (TCI), Invested Generation (IG), 
Storage (S), Generation Capacity Invested (GCI), Total Investment (TI) defined as 
TCI+GCI, System Demand (SD) and Demand Supplied per MW Installed (DSI). As we can 
see in Table XX DSI is higher for both PC and CO compared to CBF scenario. This means 
that the joint TEP and GEP investment in the storage case is more efficient than TEP and 
GEP in the base case. Additionally, DSI in CO is much  higher than in PC, which suggests 
that, in this case, storage investments are more efficient in CO than in PC. 

 
Table XX: SBF Capacity Expansion 

 IL TCI  
(MW) 

 
IG & S 

GCI  
(MW) 

TI 
(MW) 

SD 
(GWh) 

PSD 
(GWh) 

DSI 
(MWh/MW) 

WF 
(M€) 

RWF 
(M€) 

PC 2-4 200 C2, B 36.4 236.4 7 1.37 29 813 116 
CO - 0 C2, B 37.7 0 4.5 0.87 119 742 164 

 

Moreover, Figure 17 shows the usage of the battery (normalized by maximum capacity), 
we select the period of the year from h3600-h4200. As we can see, for the CO case the 
battery level is kept higher than PC case. The discharge cycles28 are similar but in CO the 
battery reaches higher levels for both upper and lower bounds, this makes the 
percentage of energy produced by battery (over total production) in CO case 19% 
compared to a 13% on the PC case. Therefore, in CO the installed battery is used more 
than under PC. However, in CO prices are higher because COAL (with higher variable 
costs) is the new peaking unit, which replaces CCGT in PC. These results lead to a greater 
total welfare in PC compared to CO as seen in Table XX. Additionally, taking into account 
that the Demand Supplied by Investment (DSI) is much higher in CO than PC, again the 
Relative Welfare (RW) is greater in CO than PC. 

 

                                                      
28 Please note that the battery cycles are daily because of our choice of representative periods as days. 
Therefore, as mentioned in [45] if the true period of the cycles (for a fully hourly model) are longer than 
1 day, they can be misrepresented by the representative periods approach.  
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Conclusions 

In this paper, we develop an analytical framework to study the strategic interaction 
between a centralized transmission planner and decentralized GENCOs. As a novelty, we 
apply an enhanced representative-period framework that permits us to introduce both 
long-term and short-term operation constraints to study the yearly evolution of the 
energy stored. Additionally, we compare the investment and welfare results in a 
proactive transmission expansion framework where the TSO anticipates either perfect 
or Cournot competition in the market. We obtain some counterintuitive results where 
Cournot competition in bi-level models, under some circumstances, can be beneficial to 
society as a whole. We also see that a Greenfield planning leads to lower market power 
compared to a Brownfield planning. For future work, stochasticity can be introduced in 
order to model renewables accurately. Additionally, this can help to enrich the analysis 
of strategic competition between production and investment decisions. Finally, a 
linearized loss approximation or AC approach can be introduced to both to eliminate 
multiple solutions and to have more accurate dispatch results.  

4.3 Transmission expansion planning under imperfect market 
competition: social planner versus merchant investor 

Introduction 

In modern electricity markets, centralized and regulated transmission system operators 
(TSOs) decide network expansion, by aiming to minimize total costs (or maximize 
welfare), while decentralized generation companies (GENCOs) decide their generation 
investment by maximizing their own profit. This market structure creates contradictory 

Figure 17: Battery Usage 
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incentives between these two market participants and can lead to different outputs 
depending on who is considered as the leader in the market. We first introduce the 
existing regulatory approaches for transmission and generation expansion planning. 
Then, we present the relevant literature and finally, we state our research question and 
objectives.  

Regulatory Approaches 

Originally, power systems were planned by vertically integrated utilities (that owns the 
transmission and generation assets, see Figure 18) with a cost-minimization objective, 
in which Generation Expansion Planning (GEP), Transmission Expansion Planning (TEP) 
and operation decisions were simultaneously taken under the assumptions of inelastic 
demand, perfect information and in the absence of competition.  

 

 

 

 

However, such a planning framework is highly questionable in modern markets. The 
generation business has been liberalized by allowing GENCOs to invest and operate 
freely, while transmission investment decisions are still regulated and operated by a 
centralized transmission company (TRANSCO). As seen in Figure 19 and Figure 20, this 
liberalized framework can be modeled considering two main regulatory approaches:  

  

 

 

 

In the proactive approach, we consider that the TSO29 is the leader in the market that 
takes its transmission investment decisions (TEP) by anticipating the generation 
investment (GEP) and operation decisions of GENCOs. In the reactive approach, the TSO 
is the follower that reacts to GENCOs decisions. Please note that a proactive approach 
with inelastic demand and perfect competition is equivalent to the previously presented 
cost-minimizing approach.  

                                                      
29 We consider that the TRANSCO is in fact a regulated TSO. 

TRANS GEN GEN GEN 

Figure 20: Proactive Approach Figure 19: Reactive Approach 

Figure 18: Cost-minimizing centralized approach 
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Despite the theoretical optimality of the proactive approach [86],[112],  most of the 
TSOs in the world follow a reactive approach [25]. Some countries [87] are applying 
regulations similar to the proactive approach (as originally proposed by [36]). For 
example, the US government approved a regulation that includes the concept of 
anticipative (proactive) transmission planning [95]. Similarly, the Chilean government 
approved a regulation that enforces the consideration of coordination between 
transmission and generation planning [96]. Lastly, in the current European context, 
ENTSOE plays the role of a centralized and regional coordinator that proposes future 
planning pathways [7], by anticipating how generation companies can react on a 
national scope.  

As a consequence of the mentioned advantages, we decide to implement a proactive 
planning approach. It is important to note that, under this framework, GENCOs can 
potentially behave strategically in both generation expansion and operation. From now 
on, we will call this behavior the ‘strategic market feedback’. This potential strategic 
behavior, on which we will focus, is particularly relevant nowadays given several 
features: i) construction times for transmission lines are consistently higher compared 
to construction times for generating units ii) high penetration of intermittent renewable 
technologies with decreasing capital costs iii) introduction of Battery Energy Storage 
Systems (BESS). 

Although energy storage existed already in the form of pumped hydro, BESS (whose 
global deployment in 2018 has doubled that of 2017 [113]) present additional features:   
i) they help stabilize market prices [73]; ii) they can be sited anywhere in the network 
and can react more rapidly to the operational needs; iii) they are natural arbitragers of 
the market; and, iv) they can either be supplementary (replace the network) or 
complementary (reinforce transmission services) to the network [114], [23], [115], 
[116].  

Finally, as a consequence of the complex deployment of energy systems, sometimes 
merchant transmission investors are essential to deploy certain types of projects 
(international tie-lines or interconnections for off-shore wind farms). Therefore, we also 
consider the case of an investor that takes its investment decision by trying to maximize 
its incomes, known as congestions rent.  

Literature Review 

Recently, there has been continuous research on power systems on what we call ‘co-
planning equilibrium models for generation and transmission expansion planning 
(GEPTEP) [72], [73], [85], [87], [90], [117], [118]. These models refer to the joint GEPTEP 
considering a decentralized market framework. In contrast to the GEPTEP co-
optimization problem (centralized cost-minimizing approach), co-planning problems 
embrace a more general market structure which considers both sequential (e.g.; first 
TEP and then GEP) and strategic decisions (e.g.; Cournot competition). This type of 
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structure leads to a hierarchical optimization problem that is complex to solve. For a 
detailed review of co-planning equilibrium problems please refer to [119]. 

Typically, GEPTEP co-planning models include three types of market agents, namely: 
GENCOs, the TSO and the Market Operator (MO). Accordingly, a three-level hierarchical 
structure is usually considered [88] [120]; some investment decisions GEP (or TEP) are 
decided in the upper level given some other TEP (or GEP) investment decisions in the 
middle level30 and subject to the spot market (where GENCOs and the MO interact)31 in 
the lower level. This three-level equilibrium structure implies solving a complex 
Equilibrium Problem with Equilibrium Constraints (EPEC) whose solution techniques are 
an active field of research [60]. Alternatively, instead of a three-level structure, we can 
consider a bi-level equilibrium that implies solving a Mathematical Problem with 
Equilibrium Constraints (MPEC). Following the proactive approach, we consider the TSO 
in the upper level (which is in charge of deciding TEP), and simultaneously GENCOs (GEP 
and operation) and MO in the lower level, as the structure depicted in Figure 20. In this 
paper, and following the approach of [75] and [76], we consider imperfect competition 
in the lower level (contrary to most works that consider perfect competition) with a 
conjectured price response framework (based on [111] which presents the single-level 
equivalent of a bi-level model using conjectural variations). For more details see Section 
1.1.2.  

As mentioned in the previous Section, BESS are becoming more and more important as 
they bring several advantages to the network. To our knowledge, only [82] and [73] have 
considered comprehensive storage co-planning models. On the one hand, authors in 
[82] develop a tri-level reactive model, they assume a merchant storage investor in the 
upper level, while transmission expansion and market operation are modeled in the 
middle and lower level respectively. On the other hand, authors in [73] model battery 
expansion in the lower level and choose a pessimistic TSO (with certain uniqueness 
properties) in the upper level. However, both [82] and [73] assume perfect competition 
in the market and disregard hydro storage. Additionally, authors in [74] consider a 
stochastic bi-level model with a merchant transmission investor in the upper level and 
both wind expansion and strategic operation in the lower level.  

In this type of planning models, there is a common trade-off between a detailed 
representation of technical operating constraints and models tractability. In particular, 
it is difficult to jointly consider storage facilities that operate in different time horizons 
because the choice of time representation (i.e., load levels vs representative hours) 
would naturally facilitate the representation of one storage facility over the other (i.e., 
pump-hydro vs batteries). Consequently, authors in [75] and [76], apply a similar 
structure to the one proposed by [74], considering Cournot competition in the lower 
level, but they model both short- and long-term storage by applying the enhanced 

                                                      
30 Depending if a proactive or reactive approach is considered 
31 Some models even consider a sequence between the market clearing and the operation 
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representative periods approach proposed by [45]. In the present paper, we extend our 
work in  [75] in several forms: i) we incorporate different GENCOs ownership structures 
in the lower level ii) we develop a comprehensive policy analysis by considering 
distinctive network setups iii) we introduce a linearized merchant investor formulation 
and compare to a social planner as presented below. 

Most of the articles discussed above assume that a regulated transmission planner is in 
charge of network expansion. However, merchant investors are sometimes essential 
carry out certain type of project, namely, international tie-lines or interconnections for 
off-shore wind farms. Articles [72]–[74] have addressed this topic in the literature; 
authors in [72] compare a merchant investor with a social planner by considering perfect 
competition in the lower level. Additionally, authors in [73] extend the work of [72], by 
modeling BESS in a zonal pricing scheme under a perfect competition environment. In 
contrast, authors in [74] model a transmission merchant investor subject to wind 
expansion and Cournot competition, disregarding storage operation and considering 
only a 3-node case. In summary, we propose a novel proactive model that considers 
both social and merchant transmission planners that anticipate the strategic behavior 
of GENCOs, that in turn, own a diversified portfolio including renewable and long and 
short-term storage technologies.    

Policy Question and Contributions 

 

Despite the fact that most of the electricity markets in the world are liberalized, 
transmission planners do not consider these kinds of interactions in the market and they 
continue planning TEP under a traditional cost-minimizing approach (assuming the 
results of a centralized GEP expansion). Thus, we raise the question of how much the 
ideal generation capacity investment, assumed by optimistic TSOs in a cost-minimizing 
approach, differs from reality (as a result of the strategic market interactions between 
GENCOs)? What is the cost of sub-optimal transmission expansion planning due to 
overly optimistic generation capacity expansion assumptions? How can we factor in 
strategic market feedback in an optimal transmission expansion plan? We propose a 
methodology that allows us to compute the welfare loss between a simple and overly 
optimistic cost minimization approach, instead of a more complex approach where a 
TSO foresees strategic market outcomes. In other words, we want to compare how the 
operation and investment decisions under perfect or Cournot competition can affect the 
transmission decisions and the overall social welfare. 

Additionally we compare how different ownership structures in the market (owning 
more than one technology) influence the exercise of market power and how they affect 
overall welfare results. Finally, we also compare distinctive planning objectives for 
centralized planners and we compare them with a merchant transmission investor.  
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Our contributions are threefold: i) we carry out a comprehensive policy analysis in which 
we study the implications of disregarding market feedback (and having distinctive 
ownership structures) in transmission expansion planning under different systems set-
ups; ii) apart from a social planner, we consider a merchant transmission investor who 
recovers its investment by maximizing congestions rents; iii) we are the first to 
comprehensively consider strategic investment in both batteries (short-term storage) 
and pumped-hydro (medium-term storage) in bi-level models.  

 

Mathematical Formulation  

 

In this Section we present the main structure of the corresponding models, we include 
the main constraints and main decision variables. Given that the main formulation was 
already presented in Section 69, we omit the detailed formulation here. However, in this 
Section we include the novel formulation of a merchant transmission investor, which is 
one of the contributions of this paper.  

Benchmark: Cost Minimization Model (CMM) 

 

Traditionally, capacity expansion has been planned from the point of view of a 
centralized vertically-integrated utility. In such a framework, depicted in Figure 21, the 
central planner decides simultaneously transmission and generation capacity expansion 
as well as the market operation by minimizing the total system cost. Additionally, the 
central planner assumes perfect competition and perfect information.  

 

 

 

 

It is 
important to note that, there is always a trade-off between how fine time granularity is 
considered and how detailed market operation is modeled. This disjunctive is especially 
important for the simultaneous representation of hydro and battery storage. In fact, 
most models consider either a load blocks (systems states) or representative periods. 
However, each of these options is more suitable for either of the storage technologies. 
In order to overcome this issue we consider an enhanced representative periods 

Single                      
Level 

Central planner 
Decides TEP, GEP, dispatch and power flows 

Minimizes Total Cost (investment +operation) 

Figure 21: Cost Minimization Structure 
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framework proposed by [45],  which considers a representative-periods approach 
together with a transition matrix that gives count of how each representative period is 
connected to each other. From this framework, it is not only possible to model the 
battery storage with its intraday charging cycle, but also the hydro operation with its 
interday charging cycles by taking advantage of the links between representative 
periods. In this sense, a time window (more than a day, i.e week or month) is chosen to 
verify the hydro storage balance and follow the yearly evolution of the reservoir. Apart 
from this consideration, this model includes basic operating constraints. 

The main constraints considered are: 
i) Maximum and minimum power outputs for existing and new conventional 

generators, new investments are considered as continuous variables. 
ii) Maximum and minimum power outputs for existing and new wind 

generators, considering them as non-dispatchable technologies. 
iii) Maximum and minimum power outputs and consumption inputs for storage 

units. Considering both inter-day constraints for short-term technologies 
(BESS) and intra-day constraints for long-term storage technologies (hydro). 

iv) Power flow constraints considering a linearized DC power flow for existing 
and new lines, we consider binary variables for network expansion. 

v) Market clearing condition. 
 

Bi-level Problem: Proactive Model (PM) 

 

We consider a proactive approach in which the TSO plans the system, as the leader in 
the market, by anticipating both GEP and operation decisions. 

1.1.1. Bi-level Structure 

 

Let us explain the main differences between the CMM (Section 0) and the PM 
frameworks.  

SO                   
(decides power flow)                       

Maximizes       
Congestion Rents    

TSO or Social Planner (decides TEP) 

    GENCOs 
(decide GEP and 

operation) 
Maximize Profits 

Market Clearing Condition 

Consumers 
(decide demand) 

Maximize 
Demand Utility 

U
pper 

Level 
Low

er         
Level 

Figure 22: Bi-level Model Structure 
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First, in the upper level, we consider two distinctive objectives for the social planner, 
namely, cost minimization and welfare maximization. Please note that the cost 
minimization objective considered here is the same as the one in the CMM framework. 
Please also note that a welfare maximization objective and a cost minimization only lead 
to the same results when there is inelastic demand, perfect competition and 
simultaneous decisions. Therefore, we compare the planning results of considering both 
planning objectives in an imperfect, elastic and sequential market model. 

Second, in the lower level we consider three type players (each one with their own 
optimization problem), namely, GENCOs, the system operator (SO) and Consumers. The 
collection of these players’ constraints is the same as that of the CMM framework. 
Finally, the market clearing condition couples every player’s optimization problem, by 
ensuring that total supply is equal to the demand at each node. This constraint in the 
only one that differs from the CMM, given that in CMM the demand is a parameter 
(inelastic) while in the PM framework it is considered to be variable (elastic demand) see 
1.1.2.  

Mathematically speaking, Figure 22 shows a structure in which an optimization problem 
(upper level) is constrained by several optimization problems (lower level). Please note 
that such a structure cannot be solved directly as an optimization problem, therefore, 
we need to transform it into a single-level problem. First, we convert the set of 
optimization problems at the lower level into a set of constraints, by considering the 
equivalent KKT conditions. These conditions, which include some non-linear 
complementarity conditions, can be linearized by applying the well-known disjunctive 
constraints [101] with tight and meaningful big-Ms [100]. To sum up, this process leads 
to a single-level MIP problem where the upper level optimization problem is subject to 
a set of linearized equilibrium constraints. For details, please refer to Appendix. 

 
1.1.2. Market Responsive Framework 

Following the work of [71],  we consider an affine relation between price and demand as 
shown in (105), i.e., demand is elastic, where pDemand represents the inelastic part of 
the demand and pDslope represents the slope of this function, which can be interpreted 
as how demand reacts to prices. Therefore, for a given node the demand would be given 
by (1). 

𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑑𝑑 = 𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑑𝑑 − 𝑝𝑝𝐷𝐷𝑠𝑠𝑝𝑝𝑡𝑡𝑝𝑝𝑆𝑆𝑑𝑑 ∗ 𝜆𝜆 ∀𝑑𝑑 (105) 

We furthermore define a conjectural variation 𝜃𝜃𝑔𝑔 = 𝜕𝜕𝜆𝜆/𝜕𝜕𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔 that is assumed to be 
known for every GENCO g. This conjecture corresponds to each GENCO’s belief on how 
much they can impact market prices by varying production 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔. If 𝜃𝜃𝑔𝑔 = 0 this 
represents perfect competition (PC), and if 𝜃𝜃𝑔𝑔 = 1/𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑡𝑡𝑝𝑝𝑆𝑆 (inverse of the slope of the 
residual demand curve) it represents a Cournot oligopoly (CO). Any intermediate value 
of the conjecture allows us to model different degrees of competitive behavior. 
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Regret Computation: CMM vs PM 

In order to compare the benchmark model and the bi-level problem, we compute what 
we refer to as regret. The regret represents the additional cost (or missing welfare) 
resulting from planning the system in a centralized traditional manner (CMM), where all 
decisions are considered to be simultaneous and perfectly competitive, compared to 
planning the system in a more realistic decentralized manner (PM) where TEP decisions 
are assumed to be taken prior to GEP decisions and considering market feedback given 
by GENCOs strategic behavior. Given that the CMM model is inelastic, while the PM is 
elastic, a specific methodology is needed to make these models comparable. This 
methodology is depicted in Figure 23: 

 
Figure 23:  Regret Computation Methodology 

i. We solve the PM model (considering Cournot competition in the lower level).  
ii. For the exact same system demand obtained by the PM, we solve the inelastic 

CMM, which obtains some TEP and GEP investments (that might differ from the 
ones obtained by the PM). We refer to this model as the Naïve CMM; it is “naïve” 
because it does not reflect the strategic behavior of GENCOs. Therefore, the TEP 
and GEP obtained by the Naïve CMM might be erroneous given that they assume 
perfect competition, which is not always the case.  

iii. We fix the TEP solution obtained by the naïve CMM, the one that would actually 
take place in a centralized planning system and see which would be the reaction 
of the actual strategic GENCOs. To this purpose, after fixing the TEP solution we 
re-run the PM model (which is equivalent to just solving the equilibrium problem 
described by the lower level of PM). This allows us to assess to what extent the 
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“wrong” TEP decision, obtained by the naïve CMM, is going to distort the 
resulting market equilibrium and GEP decisions made in imperfect markets. The 
solution of this third model allows us to compute the Actual CMM because it 
accounts for decision errors made by a cost minimization approach.  

iv. Therefore, the regret of using a CMM approach is computed as total cost (or 
welfare) of the Actual CMM minus the total cost (or welfare) of the PM. 

Bi-level Problem: Merchant TSO 

 

Additionally to the social planner considered in Figure 22 (with a cost minimization and 
welfare maximization objective), we also consider a merchant transmission investor 
(contrary to a typically centralized regulated entity) that recovers its investment directly 
from the market operation. Such a model structure is depicted in Figure 23.  

We consider that those market incomes are derived from the network congestion rents, 
which are computed as the price difference between two connected nodes times the 
flow through the corresponding connecting line.  

𝑀𝑀𝑟𝑟𝑔𝑔 Maximize
𝑣𝑣𝑣𝑣𝑝𝑝𝑣𝑣𝑤𝑤𝑡𝑡𝑦𝑦𝑟𝑟𝑦𝑦𝑦𝑦′

� 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟 ∗ 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′∈𝐿𝐿𝑔𝑔
𝑦𝑦,𝑟𝑟,𝑑𝑑

∗ ( 𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑′ −  𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑)  

− � (𝑌𝑌 − 𝑦𝑦 + 1) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑑𝑑𝑑𝑑′ ∗ �𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′ − 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦−1,𝑑𝑑𝑑𝑑′�
𝑦𝑦𝑑𝑑𝑑𝑑′∈𝐿𝐿𝐺𝐺

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑡𝑡: 𝜕𝜕𝑡𝑡𝑝𝑝𝑆𝑆𝑟𝑟 𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝 𝑃𝑃𝑟𝑟𝑡𝑡𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝  

(106) 

 

Please note that the lower problem is the same as the one of the social planner, which, 
as mentioned in 0, consists of the same constraints enumerated in 0 with addition of 
considering elastic demand. We consider that the only costs for the merchant investor 
are the investment costs. Let (106) represent the merchant investor’s objective function. 
The first term of this objective function represents the congestion rents (𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ ∗

Figure 24: Bi-level Merchant TSO 
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𝜆𝜆𝑦𝑦𝑝𝑝𝑑𝑑 -𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ ∗  𝜆𝜆𝑦𝑦𝑝𝑝𝑑𝑑′) and corresponds to a non-linear, non-convex term, which can 
cause numerical difficulties when solving the problem. Therefore, we have decided to 
linearize this term in order to solve the resulting MPEC as a MILP just as the PM models 
at Section 1.1.1. Similar linearization techniques have been applied in bi-level models in 
[73], [102].  

For illustration purposes we demonstrate how to linearize 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ ∗  𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑′. We 
start by discretizing the variable 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠, by applying a binary expansion as the one 
proposed in [102]. Equation (107) reconstructs 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠 by starting from the lower bound 
and adding some slices until the upper bound of 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠 is achieved. 

𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ =  −𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′ + Δ𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ ∗� 2𝑘𝑘 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′𝑘𝑘
𝑘𝑘

 (107) 

 

Where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′𝑘𝑘 is a binary variable and Δ𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′  is the step magnitude in 
which we divide the variable 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′, which is given by (108) 

Δ𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ = �−𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ − 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′�/2𝐾𝐾 (108) 

 

Let us define the binary expansion of 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ ∗ 𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑′ in equation (109). 

𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′ ∗ 𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑′
=  −𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′ ∗  𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑′ + Δ𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′

∗�2𝑘𝑘 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′𝑘𝑘 ∗  𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑′.
𝑘𝑘

 

(109) 

Given that the nonlinear term 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′𝑘𝑘 ∗  𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑′∈(𝐺𝐺𝑔𝑔𝐺𝐺) is the product of a binary 
variable and a continuous variable, we can linearize it by renaming the product 
𝑝𝑝𝐹𝐹𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′𝑘𝑘 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′𝑘𝑘 ∗  𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑′ and adding the two following equivalent 
equations: 

0 ≤  𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑′∈(𝐺𝐺𝑔𝑔𝐺𝐺) − 𝑝𝑝𝐹𝐹𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′𝑘𝑘 ≤   𝜆𝜆 ∗ (1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′𝑘𝑘) (110) 

0 ≤ 𝑝𝑝𝐹𝐹𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′𝑘𝑘 ≤   𝜆𝜆 ∗  (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑′𝑘𝑘) (111) 

 

Please note that we assume that prices are non-negative and therefore 𝜆𝜆 is zero.  

Thus, we re-formulate the complete problem as follows: 
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arg Maximize
𝑝𝑝𝐹𝐹𝜆𝜆

𝑦𝑦𝑝𝑝𝑑𝑑𝑑𝑑′
� 𝑝𝑝𝐹𝐹𝜆𝜆𝑦𝑦𝑝𝑝𝑑𝑑𝑑𝑑′ − 𝑝𝑝𝐹𝐹𝜆𝜆𝑦𝑦𝑝𝑝𝑑𝑑′
𝑦𝑦,𝑟𝑟,𝑑𝑑

− � (𝑌𝑌 − 𝑦𝑦 + 1) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑑𝑑𝑑𝑑′ ∗ �𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′�
𝑦𝑦𝑑𝑑𝑑𝑑′

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑡𝑡:𝐺𝐺𝐸𝐸𝑆𝑆𝑀𝑀𝑆𝑆𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠  (107) − (111) 𝑀𝑀𝑝𝑝𝑑𝑑 𝜕𝜕𝑡𝑡𝑝𝑝𝑆𝑆𝑟𝑟 𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝 𝑃𝑃𝑟𝑟𝑡𝑡𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝   

 

 

(112) 

It is important to note that -as with every linearization technique- the result depends on 
the steps considered for the discretization. Therefore, the bigger k, the smaller is the 
step size, and hence, the closer the solution would be to the global optimum. 

Case study  

In order to test the properties of the proposed model we consider two case studies, an 
illustrative 3-node case, where we study in detail the investment and operation results 
and a modified 24-IEEE test case where we run a sensitivity analysis to generalize some 
policy implications. 

Illustrative 3-Node Case 

We start out by considering a simple three-node example with: one existing 
conventional generator (CCGT) located at Node_3; one candidate wind generator 
located at Node_1; and, one candidate Battery Energy Storage System (BEES) located at 
Node_2. We consider that each generation unit belongs to a different GENCO. 
Additionally, we study a green-field approach where there is no existing transmission 
infrastructure.  

 

Figure 25: 3-Node System Characteristics 

In Figure 25, dotted lines represent candidate elements, either generation units or 
transmission lines, while continuous lines represent existing elements. We consider a 
single representative day for a single target year.  
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Table XXI: 3-Node System line characteristics 

From 
Node 

To 
Node 

Reactance 
[p.u] 

Life Time 
(years) 

Total 
Investment 
Cost (M€) 

Annual 
Investment 
Cost (M€) 

Capacity 
(MW) 

1 2 0,06 40 2 0,125 20 
2 3 0,05 40 2 0,125 20 
1 3 0,03 40 2 0,125 20 

 
Table XXII: 3-Node System GENCOs characteristics 

  
Node 

 
Status 

Life 
Time 

(years) 

Total 
Capital 

Cost 
k€/MW 

Annual 
Capital 

Cost 
k€/MW 

Variable 
Cost 

€/MWh 

Maximum 
Power 

Capacity 
MW 

CCGT 3 existing   - 50 55 
Wind 1 candidate 25 1000 85,80 0 26* 
BESS 2 candidate 15 500 54,89 0 10* 

 

Table XXI shows the technical characteristics of the transmission lines. We consider 
three candidate lines of 20 MW and 100 km with a total capital cost of 1000€/MW·km 
and a 5,5% discount rate which leads to the annual cost presented in Table XXI. 
Additionally, Table XXII shows the capital [121] and variable cost of GENCOs as well as 
their location and technical characteristics. Please note that the BESS has a 4-hour 
charge/discharge duration which implies a storage typical capacity of 40 MWh. In order 
to compute annual capital costs for GENCOs we consider a 7% discount rate [122].   

 
Figure 26: Hourly Demand Intercept 

Figure 26 shows the hourly demand intercept at the 3 different nodes; additionally, for 
Node_2 and Node_3 we consider a constant demand slope (β) of 1,6 €/MWh2 and for 
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Node_1 a slope of 2.5 €/MWh2. These values are aligned with what is usually found in 
the literature [36], [74]. Finally, for this 3-Node case, we study two main ownership 
structures i) single ownership structure (SG), where each GENCO can own only one type 
of technology and ii) mixed ownership structure (MX) where we allow generators to own 
more than one type of technology in a single node. 

Results: Single Ownership structure (SG)  

In this Section we study capacity expansion planning considering a PM model with a 
welfare-maximizing social planner that anticipates different strategic market behavior, 
namely: Perfect Competition (PC), Cournot Oligopoly (CO), and Intermediate 
Competition (IC). The corresponding conjectural variations, defined in 1.1.2, appear in 
Table XXIII.  Additionally, we consider a SG ownership structure where every GENCO can 
only own a single technology at each node.  
Table XXIII: Conjectural variations for each degree of competition. 

PC IC CO 

0 (1/ β)/2 1/ β 
Table XXIV: Economic results for the PM planning with distinctive market structures 

 
Units PC IC CO 

TEP Lines 1-2/1-3/2-
3 

1-2/1-3/2-
3 1-3/2-3 

 MW 60,00 60,00 40,00 
GEP 

 
      

BESS MW 15,41 11,13 3,28 
 MWh 61,64 44,50 13,14 

Wind MW 91,27 52,27 33,23 
Total GEP MW 106,68 63,39 36,52 
Demand TWh 6,94 5,38 4,31 
Total Cost M€ 23,66 23,53 21,17 
Relative Cost M€/TWh 3,41 4,37 4,92 
Total PS M€ 34,29 51,52 50,61 
Total CS M€ 51,43 28,56 21,26 
Total SW M€ 85,72 80,07 71,87 

 

Investment Results 

Table XXIV shows the economic results of planning the system under perfect, 
intermediate and Cournot competition. In the PC case the social planer decides to build 
all three candidate lines; this implies that, compared to the CO case, less congestions 
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appear in the transmission lines (see Figure 27). In contrast, in the CO case only two lines 
are built and therefore less total generation is built because there is less transmission 
capacity to transport the excess of the wind (which cannot be used by the battery). 
Additionally, in the IC case all lines are built and therefore the energy excess from wind 
can be directly profited by storage, resulting in BESS investments more similar to the PC 
case. 

As seen in Table XXIV the aforementioned investment plans lead to satisfying a total 
demand 38% lower in the CO case compared to the PC case. However, the total cost of 
the system in the PC case rises up to 23,66 M€, which is higher than the 21,17 M€ of the 
CO case. At first sight, this might seem counterintuitive; however, the relative cost (cost 
per unit of demand supplied) is lower in the PC case32. In contrast, the PC case naturally 
reaches the maximum social welfare which, in turn, is 19% higher than the CO case. As 
we can see, the decrease in the social welfare under de CO case is lower than the 
decrease in the total demand supplied, this happens because the proportion between 
the producer and consumer surplus is interchanged (evidencing a higher economic 
inefficiency than what is directly seen from the welfare loss). Please note that, in the 
Cournot case, the social planner avoids building a third line, which otherwise would have 
led to a worse-off situation. Let us analyze this in detail in Section 0. Finally, in terms of 
total demand, cost and welfare, the IC case is indeed intermediate between the perfect 
competition and Cournot oligopoly. However, even though the IC investments seem 
closer to PC case, the actual operation results are closer to the Cournot case, leading to 
a hidden welfare loss not reflected by the total social welfare.   

Operation Results 

The behavior described in Section 0 can be better understood by analyzing how 
production, flows and prices evolve within the representative day; as shown in Figure 
27 and Figure 28. First, let us take a look at the PC case. Figure 27 shows the expected 
utilization of transmission lines, and therefore when transmission lines are congested 
(as indicated by areas S1- S4 depicted in Figure 27) distinctive nodal prices arise (see 
corresponding S1-S4 areas in Figure 28). Second, please note that there is not a single 
period at which prices directly reflect units’ marginal cost. As seen in Figure 29, prices at 
Node_3 are always greater than 50 €/MWh, because at every hour the capacity of the 
CCGT_3 unit is at its maximum (as a consequence of a static greenfield planning model), 
and therefore prices reflect the consumers demand response. This means that the 
energy that consumers are willing to demand at a price of 50 €/MWh exceeds the 
available capacity of generators, and therefore consumers are willing to pay a price 
higher than 50 €/MWh. 

                                                      
32 Please keep in mind that, considering a social welfare maximization in the PM model (by incorporating 
the consumers’ preferences via the utility of demand) is not the same as minimizing total costs. 
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This can be appreciated in Figure 29, where non-consumed energy33 is illustrated.  Please 
note that this concept refers to actual demand consumers renounce given the resulting 
price in the market. This non-consumed energy is computed as the actual energy 
consumed minus the demand intercept at each hour, relative to this demand intercept 
(this ratio is 0 when prices are 0 and it is 1 when prices are at its maximum).  

                                                      
33 Please note that the non-consumed energy concept is different from the non-served energy concept that 
is applied to inelastic models when consumers have an infinite (or very high) willingness to pay for energy. 
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Figure 27: Flows through lines34 

                                                      

34 Please note that a negative capacity usage means that the flows go in the contrary direction of the lines. 

S1 S2 S3 S4 
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Figure 28: Prices (represented by lines) and Production (represented by bars) 

 

  
Figure 29: Hourly non-consumed energy per Node 

S1 
S2 

S2 

S3 S4 
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Figure 30: Battery Charge and Discharge (bars) and Battery Level (lines) 

 

S1 
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In this case when there is high “non-consumed energy” prices are high and when there 
is low non-consumed energy prices are low. In fact, price variations in Figure 28 (at hours 
of distinctive nodal prices) follow exactly the shape of the non-consumed energy at each 
node in Figure 29. Please keep in mind that this happens in the PC case only because 
generators are at their maximum capacity.  

Finally, let us note some features of the battery operation. First, as shown in Figure 28, 
in the PC case, the battery produces at its maximum during peak hours when prices are 
higher, which is, in fact, the efficient way in which batteries operate (energy arbitrage). 
In other words, they charge energy in the low price hours, as seen Figure 30, represented 
by area S1, and discharge it in the high price hours. Please note that a consequence of 
the intertemporal arbitrage is price stabilization (because any intertemporal price 
difference, with idle storage capacity, is an opportunity for price arbitrage), which in this 
case can be appreciated when there are congestions in the network and nodal prices are 
isolated, as seen at Node_2 in depicted areas S1 and S2 in Figure 28. 

In the CO case nodal prices35 almost always converge because there is only a short 
congestion in line 12, as seen in area S4. However, in this case, the prices are higher 
than the PC case given that some generation is withheld, therefore prices contain a 
mark-up resulting from the elasticity of demand, even when generators have idle 
capacity. The operating results of the IC case are closer to the CO case, as seen from 
Figure 27 and Figure 28. Finally, from this operation and pricing analysis it is important 
to note that the IC and CO cases present a higher price convergence, which implies lower 
congestions, but actually leads to higher prices on average. Therefore, for this case, 
nodal price convergence might not be an appropriate a-posteriori criterion to evaluate 
market efficiency36. 

Regret of disregarding market feedback 

In the previous Sections we considered a proactive model (PM) where a social planner 
aimed to maximize social welfare by anticipating different market structures in the 
lower level. In this Section we compute the regret, as introduced in 0, of planning the 
system in a centralized manner instead of planning with a PM model where the social 
planner anticipates the strategic market feedback i.e., Cournot competition in the lower 
level. Therefore, we compare the results of the CO model (in Section 0) now called 
PM_CO, with the Naïve and Actual CMM. 

                                                      
35 When the oligopolistic competition is considered, pricing results might highly differ depending on the 
type of transmission price modeling, for more details see [62] 
36 In fact, in this case high-prices and price convergence reflect a system planning under imperfect 
competition 
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As seen in the previous Section, PM_CO invests in lines 12 and 13 which leads to a 
total welfare of 71,87 M€ with a supplied demand of 4,31 TWh. Given this exact same 
demand, imagine we have a Naïve CM planner that designs the system disregarding the 
strategic market feedback. In such a case the centralized planner based on the Naïve 
CMM would build lines 12 and 23 with the expectation that GENCOs would build 
and operate the most competitive generation capacity (please note that if the Naïve 
case happened it would actually lead to a higher welfare compared to PM_CO). 

Table XXV: PM vs Cost Minimization 
 

Units PM_CO Naïve 
CM 

Actual 
CMM  

Lines 1-2/1-3 1-2/2-3 1-2/2-3 
Total TEP MW 40,00 40,00 40,00 

BESS MW 3,28 24,93 3,52 
 MWh 13,14 99,70 14,08 

Wind MW 33,23 24,54 31,48 
Total GEP MW 36,52 49,46 35,00 
Demand TWh 4,31 4,31 4,25 
Total Cost M€ 21,17 36,61 36,22 
Relative 
Cost 

M€/TWh 
4,92 8,50 8,53 

Total PS M€ 50,56 15,33 50,03 
Total CS M€ 21,31 56,87 21,29 
Total SW M€ 71,87 72,19 71,33 
Abs Regret M€   0,55 
 %   Regret    0,8 

 

However, markets are not perfect and usually we can find an oligopoly in the production, 
therefore, we evaluate which are the actual results of the strategic market given the TEP 
decided by the Naïve CMM. We call this result the Actual CMM which leads to a total 
welfare of 71,33 M€ which is 0,55 M€ lower compared to the PM_CO.  

This result is explained as follows: at the PM_CO the energy goes from Node_2 to 
Node_1 and the energy comes and goes between Node_1 to Node_3, which means the 
average net energy flows from Node_1 to Node_3 and to Node_2 (as seen in Figure 27). 
Now, given that at the Actual CMM line 23 is built instead of 13, the congestions 
increase, and less wind energy can be evacuated from Node_1 to supply demand at 
Node_3 trough Node_2. This leads to a lower wind investment, but a slightly larger BESS 
investment to store also some of the energy coming from Node_3. This shows that 
building line 2  3 instead of 13 leads to a 0,8% reduction in the total SW. Please note 
that either of these results leads to a better-off situation than actually building all 
possible lines. These findings are contrary to those of [74], where it was suggested that, 
in the CO case, the social planner would build as much lines as possible (when no storage 
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is considered) to diminish GENCOs market power. We show here that, in the presence 
of storage units (and depending on demand elasticity), it can be the case that building 
more lines leads to a lower social welfare. 

 

Results: Mixed Ownership Structure (MX) 

 

In this Section we want to investigate what are the welfare effects of considering 
GENCOs with a multi-technology portfolio. For this purpose, we analyze two cases 
additional to the Single Ownership (SG) case (base case from Section 0). i) We consider 
that apart from wind generation, GENCO1 can invest in BESS37, and we call this the 
Mixed Ownership BESS case (MB). ii) On top of i) let us consider that GENCO2 invests in 
hydro38 instead of BESS and we call it the Mixed Ownership Hydro case (MH). Please find 
a summary of these cases in Table XXVI. 
Table XXVI: Battery of cases 

 SG MB MH 

GENCO1 Wind_1 Wind_1 Wind_1 

  BEES_1 BEES_1 

GENCO2 BESS_2 BESS_2 Hydro_2 

GENCO3 CCGT_3 CCGT_3 CCGT_3 

 

Additionally, apart from considering distinctive ownership structures we analyze the 
possible planning differences of planning the system as a social planner vs a merchant 
investor. This comparison would allow us to understand how inefficient a merchant 
investor can be (compared to the social planner solution), and would allow policy 
makers make the right considerations when accepting this kind of investors for isolated 
or international connections.   

                                                      
37 With the same technical characteristics as BESS at Node_2 see Table XXII 
38 With a capital cost of 140 M€/MW, a 0,80 roundtrip efficiency and a weekly (168h) of typical 
storage per MW installed. 
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Social Planner 

Table XXVII: Economic results mixed ownership structure 

  Mixed Battery (MB) Mixed Hydro (MH)  
Units PC CO PC CO 

TEP Lines 1-2/1-3/2-
3 

1-2/1-3 1-2/2-3 1-3 

 MW 60,00 40,00 40,00 20,00 
GEP 

 
        

BESS_2 MW 10,69 1,62 0,00 0,00 
 MWh 42,77 6,47 0,00 0,00 

HYDRO_2 MW 0,00 0,00 12,11 10,96 
 MWh 0,00 0,00 2034,5 1841,28 

BESS_1 MW 24,02 10,63 27,80 7,93 
 MWh 96,08 42,50 111,18 31,72 

Wind_1 MW 100,63 33,06 94,45 27,04 
Total GEP MW 138,85 48,97 159,62 75,57 
Demand TWh 7,28 4,32 8,87 5,76 
Total Cost M€ 23,68 21,36 23,70 20,45 
Total PS M€ 35,07 50,89 45,45 67,84 
Total CS M€ 53,28 21,60 66,59 31,65 
Total SW M€ 88,35 72,491 112,04 99,49 

 
As shown in Table XXVII, and in accordance with the results in Section 0, transmission 
expansion and generation expansion are higher under a perfect competition than under 
Cournot oligopoly. Unsurprisingly, these investments lead to a higher welfare in the PC 
case for every ownership structure. However, let us study in detail how consumer 
surplus (CS) and producer surplus (PS) share vary for every case. Figure 31 shows the 
welfare distribution for each ownership structure, details of the Mixed Ownership are 
shown in Table XXVII while details of Single Ownership is shown in Table XXIV Section 0. 
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Figure 31: Welfare Distribution 

 

First, we can see a consistency in the welfare distribution among all PC cases and among 
the CO cases respectively. In PC cases, 60% of welfare corresponds to CS and 40% to the 
PS, while in the CO case this share is inverted, and lies around the 35% for CS and 65% 
for PS. Please note that the PS and CS share depend both on the demand elasticity and 
the degree of competition. However, the PS share is always higher in the CO case 
compared to the PC case, as a result of the exercise of market power. Therefore, let us 
define the ratio PS/CS as an additional efficiency measure, whose lowest value would 
indicate a better-off situation, given that we keep the demand slope fix along the 
different cases.  
Table XXVIII: PS/CS ratio each Cournot oligopoly case 

 SO_CO MB_CO MH_CO 

PS/CS 2,38 2,35 2,1 

 

Table XXVIII shows that SG_CO is the most inefficient scenario. Even though in the 
MB_CO case GENCO 1 increases its profits, as seen in Figure 32, total demand supplied 
increases more than proportionally and the PS/CS ratio is actually lower. Please also 
note that at the hydro case (MH) the highest welfare is achieved, for both PC and CO 
cases (Table XXVII). Please note that the pumped hydro storage includes some natural 
inflows that the battery storage does not, and therefore, it represents some extra 
available power which increases total welfare. Additionally, the PS/CS ratio is lower in 
the MB case because the additional available hydro energy diminishes the amount of 
energy that GENCO2 can export, and in overall decreases GENCOs market power. This is 
also reflected in Figure 32, by the decrease of profits of GENCO1 from case MB_CO to 
MH_CO, while profits of GENCO2 increase, reflecting a higher competition among 
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GENCOs. Therefore, in this case study, a diversified generation portfolio seems to 
increase competition and results in more efficient planning and operation management.  

 
Figure 32: GENCOs profit distribution among different ownership structures 

Merchant TSO 

 

Finally, we analyze the economic results of a merchant transmission investor. As 
formulated in Section 0, we now consider a merchant agent at the upper level, that aims 
at maximizing its own profit. This type of regulation is not usually applied to a complete 
system but exists for specific project. For instance, merchant investment is applied for 
interconnections in Europe [123] and has been expanding in the US, in fact in 2018 the 
FERC extended the authorization for off-shore wind farms connections by allowing this 
type of investments, only if the merchant transmission company assumes all market risk 
[124]. 

We apply this framework to the MH case from Section 0. As seen in Table XXIX, some 
interesting results appear when considering a merchant investor. In the PC case, having 
a merchant investor instead of a social planner leads to a welfare of 110,09 M€, which 
is 0,52% lower compared to the social welfare achieved by the social planner (see Table 
XXVII). It is interesting to note that both planners would invest in two lines, but in a 
different combination. A social planner would invest in lines 12 and 13 while 
merchant investor would invest in lines 12 and 23. In spite of the lower generation 
investment of the merchant case, there would be a higher congestion for generation at 
Node_3 trying to evacuate to Node_2.  In contrast, in the CO case, the merchant 
transmission would invest in line 12, which would maximize congestions rents 
compared lines 13 built by social planner. This would lead to a 2,2% lower welfare 
compared to a social planner. 
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Table XXIX: Economic results of a merchant transmission investor 

  Mixed Hydro (MH)  
Units PC CO 

TEP Lines 1-2/2-3 1-2 
 MW 40,00 20,00 
GEP 

 
    

BESS_2 MW 0,00 0,00 
 MWh 0,00 0,00 

HYDRO_2 MW 14,69 10,98 
 MWh 58,78 43,94 

BESS_1 MW 17,22 7,98  
TWh 68,87 31,92 

Wind_1 M€ 71,22 27,72 
Total GEP  127,64 75,86 
Demand  7,99 5,78 
Total Cost M€ 23,70 20,77 
Total PS M€ 53,22 69,34 
Total CS M€ 56,87 32,43 
Total SW M€ 110,09 97,32 

 

IEEE-24 bus test case  

In order to test this model we consider an IEEE-24 modified system as the one 
considered in [114]. 
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Figure 33: IEEE-24 test case 

As seen in Figure 33, this system is made up of 24 buses, 33 existing lines, and 12 existing 
conventional generators. Continuous lines represent existing elements and dotted lines 
represent candidate lines. We consider 3 candidate conventional generators at nodes 3, 
10, and 19, as well as 6 wind candidate generators at buses 3, 5, 7, 16, 21, 23.  

Additionally, we consider 4 candidate BESS at nodes 1, 3, 15 and 1 hydro candidate at 
node 19. We consider 4 representative days (h3697-h3720, h8425-8848, h5305-h5328 
and h1897-h1920). As seen in Figure 34, we consider different profiles for the wind 
candidate generators located in the south (nodes 3, 5, 7) and those located in the north 
(nodes 16, 21, 23). Additionally, we consider a yearly hydro inflow shown in Figure 35, 
and a 168h window (as defined in 0) for the inter-day storage constraints. We consider 
the same capital costs as in the 3-node case and a cost of 1300 k€/MW for conventional 
generators considering 30 years life-time and a 7% discount rate (equivalent to 104 
M€/MW annually). Finally, we consider a transmission capacity of 50MW for each of the 
transmission lines (existing and candidates) of the system and a demand slope of 0,55 
€/MWh2.  
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Figure 34: Wind Profiles 

 
Figure 35: Yearly hydro inflows 

 

Merchant TSO vs Social Planner 

In this Section we evaluate the 24-Bus case. First, we compare the results of planning 
the system considering different planners and objective functions. Additional to the 
previous Section, we include a social planner with a cost-minimization objective. Please 
note that in this subSection, every model considers elastic demand.   

Table XXX shows the economic results of planning the system considering distinctive 
objective functions for the social planner (maximizing welfare or minimizing cost) and 
the merchant investor (maximizing congestion rents). We compare the economic 
efficiency of such regulatory schemes by comparing total welfare at each case.  

Let us point out that the welfare-maximizing and cost-minimizing objectives only lead to 
the same results when there are inelastic demand and perfect competition in the 
market. However, here we compare what are the planning results of a social planner 
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with either a cost-minimizing or welfare-maximizing objective39. It is evident that the 
social planner with a welfare-maximizing objective achieves the highest social welfare, 
however it is interesting to note that, in the PC case, considering a cost-minimization 
objective for the social planner leads to the same sub-optimal equilibrium than the 
merchant investor who aims to maximize, its own profits. In the CO case, in fact, the 
merchant investor decisions lead to the worse-off situation overall. These results are 
case dependent, but they suggest that a social planner that minimizes cost in a market 
with elastic demand can lead to the same sub-optimal results as a merchant investor 
that maximizes congestion rents.   
Table XXX: Economics Results 24-Node Case 

    Perfect Competition (PC) Cournot Oligopoly (CO) 

    Max 
Welfare 

Min 
Cost 

Max 
Rent 

Max 
Welfare 

Min  
Cost 

Max 
Rent 

TEP MW 200 200 100 100 100 100 
GEP MW 1484,25 1481,77 1481,77 1016,07 1012,37 1012,37 

Demand TWh 7,20 7,42 7,42 2,53 2,50 2,71 
Total Cost M€ 490,43 475,34 475,34 319,22 312,43 316,23 
Relative 

Cost M€/TWh 68,08 64,09 64,09 126,04 124,97 116,78 
Cong. Rent M€ 187,80 196,15 196,15 153,43 167,08 168,63 
Total SW M€ 1211,49 1192,06 1192,06 1019,69 1011,52 1010,04 

 

Figure 36 shows how GEP investments are distributed in each case. As we can see in the 
PC case, there are bigger differences among each regulatory objective, while in the CO 
case the results are closer to each other. However, the investments in the CO case are 
always lower than the investment in the PC case. Please note that storage generation is 
almost non-profitable in the Cournot case, which is similar to the results in the 3-node 
Greenfield case. As mentioned before, these results are case dependent results, 
however, from several cases we have noticed that the CO cases tend to underinvest 
compared to the PC case, especially in BESS and wind while conventional generation and 
hydro investments tend to remain closer to the PC case. This could be explained, 
similarly to Section 0, because of the greater market power that BESS and wind can 
exercise when belonging to the same GENCO.  

                                                      
39 Having in mind that the appropriate objective is welfare maximization 
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Figure 36: Generation Investment in Conventional Technologies, Wind, BESS and Hydro 

 

Welfare Loss and Generation Mix Distortion 

 

In this Section we compute the regret, as defined in 0, of disregarding market feedback 
in transmission expansion planning. The regret is computed as the welfare difference 
(relative the PM_CO) between the PM_CO case and the Actual CMM. Additionally, we 
also investigate how the generation mix changes under the different planning 
paradigms, and we compute the total GEP change by taking the difference between the 
GEP invested in the PM_CO and the Actual CMM relative to the existing generation 
capacity (4,32 GW). 

Table XXXI: Proactive vs cost minimization: welfare and investment results  
Units PM 

CO 
Actual 
CMM 

Difference 
(MW) 

Difference 
 (%)  

Lines 3-24/9-11 9-11   
Total TEP MW 100 50 -50 -50 

BESS MW 92,34 93,78 1,44 1,56 
 MWh     

Wind MW 664,99 663,54 -1,45 -0,22 
Thermal MW 151,96 164,21 12,25 8,06 

Total GEP MW 909,29 921,53 12,24 1,35 
Total SW M€ 1035,75 1034,15 1,60 0,15 
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Table XXXI shows the welfare and investment differences between the Actual CMM and 
the PM_CO. In this case, the Actual CMM invest only in line 911, which leads to 0,28% 
GEP overinvestment compared to the PM_CO case and a welfare regret of 0,15%. For 
this specific case these values are almost negligible, therefore in order to understand 
how these results vary among different system characteristics, we run a sensitivity 
analysis of the regret computation and the generation mix change. We examine 
different levels of the demand slope, from 0,50 €/MWh2 to 1 €/MWh2, and we consider 
different constrained systems by varying the capacity of all transmission lines from 40 
MW to 65 MW. 

 
Figure 37: Regret Computation Sensitivity 

As we can see in Figure 37, there is a non-linear relationship between regret and demand 
slope, and there is a non-linear but increasing relationship between regret and system 
congestion. Even though the percentage numbers of the regret seem relatively small 
(below 1% in the cases that we have studied here), in absolute terms the regret still 
ranges in the order of millions of euros. Therefore, disregarding strategic market 
feedback in a highly congested system can be considered a non-negligible planning 
regret, this result naturally follows, as a heavily congested system is more prone to 
present inefficiencies if no proper expansion is undergone. Additionally, there is not a 
clear evidence on how elasticity affects the regret of disregarding market feedback, but 
from Figure 37 we can see that low-congested systems are more sensitive to demand 
elasticity than highly-congested systems.  
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Figure 38: Generation Mix Sensitivity 

The relatively small welfare regret, shown in Figure 37, can be somehow misleading if 
we do not investigate how the generation mix changes. Figure 38 shows how the 
generation mix changes depending on how constrained or elastic the demand in the 
system is. Figure 38 shows the existence of a distortion of the capacity mix, ranging from 
1% to 7%. In particular, the highest generation-mix distortion is appreciated in mid-
congested levels (50 MW and 55 MW transmission capacity) and elastic systems. 
Therefore, from the previous two graphs we can conclude that, TEP decisions made by 
a cost-minimizing TSO that disregard strategic market feedback will generate a relatively 
small welfare loss that tends to increase for highly constrained systems. In this specific 
case, the decisions of the cost-minimizing TSO will result in a significantly GEP 
overinvestment when there is a high demand slope, which will imply a higher welfare 
loss in the case of the most constrained networks.   



 Final report: " Task 2: Long-Term Models for Integration of RE Technologies" 
 

120  Dec 2020 
 

 
Figure 39: Generation Mix Distortion 

From our sensitivity case we show, in Figure 39, the case with 55 MW capacity on 
transmission lines and a slope of 1 MW2/€. In this case we can see a significant variation 
in the generation mix, which can affect the robustness of the system. In fact, in the 
Actual CMM, 60 MW of additional capacity is invested in wind generation, but only 1 
MW (MWh) of storage and 4 MW of conventional generation (given a higher demand). 
This structure would react significantly different to variations in the wind availability that 
could lead to a high level of stress in the system implying a lower robustness.  

In summary for this case study, one can conclude that disregarding market feedback 
might have a relatively small impact in terms of the overall welfare loss (which we 
referred to as regret); however, the subsequent impact on the optimal generation mix 
can be considered non-negligible. In this case study we have observed relative 
generation mix distortions of up to 7%. The distortion of the optimal generation capacity 
mix can, in turn, have important results on the robustness of the system. This detailed 
analysis is out of the scope of this paper.  

 

Conclusions and Policy Implications 

 

In this paper we proposed a model that represents generation and transmission 
expansion planning from the perspective of a proactive social planner. This social 
planner designs the system considering the feedback from either a perfectly competitive 
market or a Cournot oligopoly. Additionally, we considered also the formulation of a 
merchant investor that aims to maximize its congestion rents. As a novelty, we included 
investment and operation of long- (hydro) and short- (BESS) term storage systems.  
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This model allows us to study different policy issues. First, we evaluated the policy 
implications of planning the system under different objectives: either for a social planner 
(maximizing welfare, minimizing cost) or for a merchant investor (and maximizing 
congestion rents). We tested such planning objectives while considering either Cournot 
or perfect competition in the market. We concluded that the sub-optimal results of 
considering cost-minimization or congestion rent maximization are case dependent. In 
fact, we found that in some cases, a congestion-rent maximization can lead to the same 
welfare loss as a cost-minimization objective if there is some degree of demand 
response (through demand elasticity). Additionally, for the cases tested, under a 
Cournot oligopoly, we found that introducing a diversified generation portfolio for 
GENCOs leads to a better-off situation as it increases the competition among GENCOs.   

Finally, we proposed a measure to evaluate the welfare loss of planning the system 
under the overly-simplistic view of a cost-minimizing vertically-integrated utility instead 
of a more realistic proactive framework that recognizes the possible strategic feedback 
(coming from GENCOs operation and investment decisions). We concluded that, if 
transmission planners disregard strategic market feedback in heavily constrained 
systems, there is a high chance that they will incur in a non-negligible welfare loss. Most 
importantly, this sub-optimal planning procedure also leads to a significant distortion of 
the optimal generation mix. This distortion can result in an over/under-investment 
depending on the system characteristics. Additionally, this sub-optimal generation mix 
can affect the robustness of the system, in terms of the responsiveness to intermittent 
resources availability. In future research we plan to explore those implications by 
extending the model and including uncertainty in the renewable sources. Moreover, 
alternative RES policy designs could be included in the transmission planner objective 
function to test more deeply how the social welfare can be affected.  

 

5 Comparing Scenario-Based Transmission and Generation 
Expansion Planning Models for Imperfectly Competitive 
Markets Under Uncertain Wind Production 

In this section we introduce the stochastic proactive GEPTEP co-planning problem by 
means a bi-level equilibrium model. This equilibrium (which is convex, because all 
constraints are linear) is re-formulated as a Mixed Integer Program (MIP), by replacing 
the lower level equilibrium constraints by its equivalent KKT conditions, and then by 
linearizing the resulting non-linearities. We present a 24-node case by comparing the 
deterministic, stochastic and min-max scenario based optimization under perfect and 
imperfect competition. 



 Final report: " Task 2: Long-Term Models for Integration of RE Technologies" 
 

122  Dec 2020 
 

5.1 Notation  

A. Sets / Indices 

𝑦𝑦 ∈ 𝑌𝑌 year  

𝑝𝑝 ∈ 𝑝𝑝 scenarios 

𝑝𝑝,∈ 𝑃𝑃 periods (hours in the year) 

𝑝𝑝𝑠𝑠 ∈ 𝑃𝑃𝑠𝑠 Moving window periods  

𝑟𝑟𝑝𝑝 ∈ 𝑅𝑅𝑃𝑃 representative periods  

Γ𝑟𝑟𝑟𝑟,𝑟𝑟 set of correspondence between 𝑟𝑟𝑝𝑝 and 𝑝𝑝 

𝑝𝑝 final period 

𝑑𝑑,𝑑𝑑′ ∈ 𝐷𝐷 nodes 

𝑔𝑔 ∈ 𝐺𝐺 generator unit g 

𝑆𝑆(𝑔𝑔) ∈ 𝑇𝑇 thermal units 

ℎ(𝑔𝑔)  ∈ 𝐻𝐻 storage units 

ℎ𝑓𝑓(ℎ)  ∈ 𝐻𝐻𝐹𝐹 fast short-term storage units (batteries) 

ℎ𝑠𝑠(ℎ) ∈ 𝐻𝐻𝑆𝑆 slow long-term storage units (hydro) 

𝐺𝐺𝐺𝐺𝐷𝐷(𝑔𝑔,𝑑𝑑) set of all possible g located at node d 

𝐺𝐺𝐺𝐺𝐷𝐷(𝑔𝑔, 𝑑𝑑) set of existing g located at node d 

𝐺𝐺𝐺𝐺𝐷𝐷(𝑔𝑔,𝑑𝑑) set of candidate g located at node d 

𝜕𝜕𝐺𝐺(𝑑𝑑,𝑑𝑑′) set of all possible lines from node d to d’ 

𝜕𝜕𝐺𝐺(𝑑𝑑,𝑑𝑑′) set of existing lines from node d to d’ 

𝜕𝜕𝐺𝐺(𝑑𝑑,𝑑𝑑′) set of candidate lines from node d to d’ 

𝐻𝐻𝑝𝑝𝑝𝑝′ Univocal correspondence between period p and p’ ∈
Γ𝑟𝑟𝑟𝑟,𝑟𝑟 

B. Parameters 

𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔 Maximum capacity of technology 𝑔𝑔 MW 
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𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′ Maximum flow in line dd’ MW 

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑′ Reactance of line dd’ [p.u] 

𝑝𝑝𝐹𝐹𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑡𝑡 Fuel cost of technology 𝑆𝑆 €/MWh 

𝑝𝑝𝐹𝐹𝑝𝑝𝑥𝑥𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑡𝑡 Fix operation cost of thermal generator € 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑔𝑔 Annualized investment cost 𝑔𝑔  €/MW        

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑑𝑑𝑑𝑑′ Annualized investment cost of line dd’ € 

𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦𝑟𝑟𝑑𝑑 Demand Intercept at year y period 𝑝𝑝 at node 𝑑𝑑 MW 

𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑡𝑡𝑝𝑝𝑆𝑆 Demand Slope  €/MW 

𝑝𝑝𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑦𝑦ℎ Efficiency of storage unit h  [p.u] 

𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑡𝑡𝑑𝑑 Energy inflows for year y period p storage hs at node d MWh 

𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝ℎ 

𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝ℎ 

Max/Min reservoir level of storage unit h  MW 

𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐺𝐺𝑡𝑡𝑝𝑝𝑠𝑠ℎ Maximum consumption of storage unit MW 

𝑀𝑀 Time window h 

𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟 Weight of each representative day [p.u] 

𝑝𝑝𝑆𝑆𝑝𝑝 Base Power  MW 

𝜃𝜃𝑔𝑔 Conjectural variation of GENCO g €/MW 

C. Variables 

 

𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑 Production at year 𝑦𝑦 scenario w period 𝑝𝑝 of 
generator 𝑔𝑔 at node d 

MW 

𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑 Investment status at year 𝑦𝑦 of generation unit g 
at node d  

{0,1}/MW 

𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′ Investment status at year 𝑦𝑦 of line connecting 
node 𝑑𝑑 to 𝑑𝑑′ 

{0,1}/MW 

𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′ Flows at year 𝑦𝑦 scenario w at period 𝑝𝑝  from 
node d to d’  

MW 
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𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑 Voltage angle at year y scenario w period p 
node d  

p.u. 

𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑 Demand at year y scenario w period 𝑝𝑝 at 𝑑𝑑 MW 

 

𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑 Level at year 𝑦𝑦 scenario w period 𝑝𝑝 of storage 
unit h at node 𝑑𝑑  

MW 

 

𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑝𝑝𝑦𝑦𝑟𝑟ℎ𝑑𝑑 Consumption at year 𝑦𝑦scenario w  period 𝑝𝑝 of 
storage unit h at node 𝑑𝑑 

MW 

𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑 Spillage at year 𝑦𝑦 scenario w period 𝑝𝑝 of 
storage unit h at node 𝑑𝑑 

MW 

 

λypd  Prices at year y scenario w period p node d  €/MW 

 

5.2 Model Description 

Before presenting the formulation of the bi-level model, we first explain the market 
responsive framework to be used in the lower level. Then, we introduce the Bi-level 
Proactive Model (PM). 

1. Market Responsive Framework 

Following the work of [24],  we consider an affine relation between prices and demand 
as shown in (105), i.e., demand is elastic, where pDemand represents the inelastic part of 
the demand and pDslope represents the slope of this function, which can be interpreted 
as how demand reacts to prices. Therefore, for a given node and period the demand 
would be given by (1). 

𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑑𝑑 = 𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑑𝑑 − 𝑝𝑝𝐷𝐷𝑠𝑠𝑝𝑝𝑡𝑡𝑝𝑝𝑆𝑆𝑑𝑑 ∗ 𝜆𝜆𝑑𝑑 ∀𝑑𝑑 (113). 

We furthermore define a conjectural variation 𝜃𝜃𝑔𝑔 = 𝜕𝜕𝜆𝜆𝑑𝑑/𝜕𝜕𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔 that is assumed to be 
known for every GENCO g . This conjecture corresponds to each GENCO’s belief on how 
much they can impact market prices by varying its production 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔 (or 𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝ℎ  for 
storage units). If 𝜃𝜃𝑔𝑔 = 0 this represents perfect competition (PC), and if 𝜃𝜃𝑔𝑔 =
1/𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑡𝑡𝑝𝑝𝑆𝑆 (inverse of the slope of the residual demand curve) it represents the Cournot 
oligopoly (CO). This conjecture allows us to model different degrees of competitive 
behavior. 
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2. Deterministic Bi-level Proactive Model (DPM) 

We present the proactive framework in which a social planner TSO - which can be 
understood as an entity where both TSO and regulator are considered together - (from 
now on TSO)  proposes investments and GENCOs react to its decisions. Figure 40 shows 
the bi-level framework, where the TSO takes TEP decisions in the upper level subject to 
the lower level. Likewise, the lower level represents the market equilibrium where 
GENCOs take GEP and operating decisions, while the system operator (SO) makes sure 
that the power flow decisions are feasible. 

 

 

 

 

 

 

 

 
Figure 40: Bi-level Framework. 

3. Stochastic Bi-level Proactive Model (SPM) 

Please note that in Section 2 we consider that investment and operation are taken 
simultaneously in the lower level. This model, known as an open loop capacity equilibria, 
can render the same results as a close loop model (generation decisions first and then 
operation) only under certain conditions [13]. Even though the close loop equilibria is a 
more general framework, that considers the sequence between generation investment 
and operation, it leads to a more complex and intractable model. Therefore, in order to 
overcome the simplifications made by the open loop capacity equilibria we consider a 
two-stage stochastic generation expansion model in the lower level, which in turn leads 
to a stochastic proactive bilevel model, please see Figure 41. 

We simplify the operation in the whole year by considering four representative days. 
Accordingly, we consider different wind profiles for each representative day, this implies 
considering daily the variability of wind along the year. However, wind can variate from 
year to year up to 20% from the mean (for the U.S western system), as seen from 
historical times series. Therefore, for each profile in each representative day we 
consider three scenarios (w), low, mean and high scenarios, which are 20% higher and 
lower respectively, in terms of energy, compared to the mean.  
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Figure 41: Stochastic Bi-level Framework 

Upper Level: TEP 

 

The social planner TSO aims at maximizing the total expected welfare, computed as the 
Utility of the Demand (UD) minus total costs. This objective is represented by (4), where 
central planner TSO minimizes the Total Cost (TC) composed by Line Investment Costs 
(LI), Generation Investment Costs (GI), and Operation Cost (OC). Therefore, the actual 
objective function would be given by (114). Note that we do not allow for de-investment 
as imposed by equations (117) and (118). Equation (115) represents the utility of 
demand resulting from the area under the demand curve. 

 

Maximize
𝑣𝑣𝑣𝑣𝑔𝑔𝑤𝑤𝐿𝐿𝑣𝑣𝑛𝑛𝑔𝑔𝑦𝑦𝑑𝑑𝑑𝑑′

 𝑝𝑝𝐷𝐷 − (𝑝𝑝𝐺𝐺 + 𝜕𝜕𝑝𝑝 + 𝐺𝐺𝑝𝑝)   (114) 

 

Subject to (115) - (119), and Lower Level equilibrium 

 

 

GENCOs 
Maximizes Expected Profit (decide GEP) 
  

GENCOs 
𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑤𝑤1𝑟𝑟𝑔𝑔𝑑𝑑 
𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑤𝑤1𝑟𝑟ℎ𝑑𝑑 
𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑤𝑤1𝑟𝑟ℎ𝑑𝑑 
𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑦𝑦𝑤𝑤1𝑟𝑟ℎ𝑑𝑑 

SO  
𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑤𝑤1𝑟𝑟𝑑𝑑𝑑𝑑′  
𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑤𝑤1𝑟𝑟𝑑𝑑 

Consumers  
𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦𝑤𝑤1𝑟𝑟𝑑𝑑 

  

GENCOs 
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𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑤𝑤2𝑟𝑟ℎ𝑑𝑑 
𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑤𝑤2𝑟𝑟ℎ𝑑𝑑 
𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑦𝑦𝑤𝑤2𝑟𝑟ℎ𝑑𝑑 

SO  
𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑤𝑤2𝑟𝑟𝑑𝑑𝑑𝑑′  
𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑤𝑤2𝑟𝑟𝑑𝑑 

Consumers  
𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦𝑤𝑤2𝑟𝑟𝑑𝑑 

  

GENCOs 
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𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑤𝑤𝑛𝑛𝑟𝑟𝑑𝑑𝑑𝑑′  
𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑤𝑤𝑛𝑛𝑟𝑟𝑑𝑑 
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Lower Level: market equilibrium 

 
The lower level represents the market equilibrium where consumers maximize the 

utility of the demand, GENCOs maximize their profits (deciding generation investment 
and operation of generating assets) and a SO maximize congestions rents (deciding 
power flows and voltage angles). The consumers, GENCOs and SO’s optimization 
problems are linked by the market clearing condition (78). This market structure implies 
that GENCOs do not anticipate market outcome in their expansion decisions.  However, 
as mention before, by introducing a two-stage stochastic model we are able to decide 
generation investment by considering different possible operation scenarios. 
Additionally, since we are able to adapt the degree of competition in the market in our 
model, choosing a less competitive market might “compensate” for this non-anticipation 
[25]. The previous description implies that the market is modeled as a spatial equilibrium 
model where GENCOs compete strategically and react naively to the transmission 
congestions as in [26]. Additionally, we assume that there is only one GENCO per node, 
but we might have several generation units per GENCO.  

Moreover, in the formulation of the market model we use enhanced representative 
days [18] to represent the temporal structure. The novelty of this temporal 
representation is that it allows us to capture both short- and long-term storage 
technologies accurately due to the intra- and inter-day storage constraints, which are 
explained in detail in [18] and upon which we comment briefly later on. From now on, 
each equation is defined for 𝑝𝑝 ∈ Γ𝑟𝑟𝑟𝑟,𝑟𝑟.(except (14)). Please note that Γ𝑟𝑟𝑟𝑟,𝑟𝑟 indicates which 
hours, from the whole year, belong to each representative day. 
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Consumer: Demand Utility maximization 

The consumers try to maximize the utility of the demand, by deciding demand. Their 
optimization problem is given by: 

 
𝑀𝑀𝑀𝑀𝑥𝑥𝑣𝑣𝐺𝐺𝑔𝑔𝑣𝑣𝐵𝐵𝑛𝑛𝑑𝑑𝑦𝑦𝑦𝑦𝑟𝑟𝑦𝑦  𝑝𝑝𝐷𝐷 

Subject to (115) and (120)  

𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦,𝑤𝑤,𝑟𝑟,𝑑𝑑 ≥ 0 ∀𝑦𝑦𝑝𝑝𝑝𝑝𝑑𝑑 ∶ 𝜄𝜄𝑦𝑦,𝑤𝑤,𝑟𝑟,𝑑𝑑 (120) 

 

GENCO: Profit Maximization Problem 

 

𝑀𝑀𝑟𝑟𝑔𝑔 Maximize
𝐺𝐺𝐷𝐷

𝑃𝑃𝑟𝑟𝑡𝑡𝑓𝑓𝑝𝑝𝑆𝑆 = 𝑝𝑝𝑝𝑝 − 𝑝𝑝𝐺𝐺 − 𝐺𝐺𝑝𝑝 (121) 

Subject to (116),(118), (122) - (14). 
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0 ≤ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑 ≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔                                                ∶ �̅�𝜌𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑 ,𝜌𝜌𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑          ∀𝑦𝑦𝑝𝑝𝑝𝑝,∀𝑔𝑔𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷 
(124) 

0 ≤  𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑 ≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔 ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑤𝑤𝑔𝑔𝑑𝑑               ∶ 𝜔𝜔�𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑 ,𝜔𝜔𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑         ∀𝑦𝑦𝑝𝑝𝑝𝑝,∀𝑔𝑔𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷 (125) 

0 ≤ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑 ≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑟𝑟𝑤𝑤𝑔𝑔𝑑𝑑                                      ∶ 𝜌𝜌𝑝𝑝����𝑦𝑦𝑤𝑤𝑛𝑛𝑔𝑔𝑑𝑑 ,𝜌𝜌𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑     ∀𝑦𝑦𝑝𝑝𝑝𝑝,∀𝑔𝑔𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷 (126) 

0 ≤ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑 ≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑟𝑟𝑤𝑤𝑔𝑔𝑑𝑑 ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑         ∶ 𝜔𝜔𝑝𝑝�����𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑 ,𝜔𝜔𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑   ∀𝑦𝑦𝑝𝑝𝑝𝑝,∀𝑔𝑔𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷 (127) 

𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝ℎ ≤ 𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑 ≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝ℎ                            ∶ 𝜇𝜇𝑆𝑆���𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑 ,𝜇𝜇𝑆𝑆𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑       ∀𝑦𝑦𝑝𝑝𝑝𝑝,∀ℎ𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷  
(128) 

0 ≤ 𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑 ≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝ℎ ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦ℎ𝑑𝑑                  ∶ 𝜇𝜇𝑆𝑆���𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑 ,𝜇𝜇𝑆𝑆𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑        ∀𝑦𝑦𝑝𝑝𝑝𝑝,∀ℎ𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷 
(129) 

0 ≤
𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑

𝑝𝑝𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑦𝑦ℎ
≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐺𝐺𝑡𝑡𝑝𝑝𝑠𝑠ℎ                                                ∶ 𝜅𝜅𝑆𝑆���𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑 ,𝜅𝜅𝑆𝑆𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑       ∀𝑦𝑦𝑝𝑝𝑝𝑝,∀ℎ𝑑𝑑 ∈  𝐺𝐺𝐺𝐺𝐷𝐷 

(130) 

0 ≤
𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑
𝑝𝑝𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑦𝑦ℎ

≤ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝ℎ ∗ 𝐺𝐺𝑇𝑇𝐷𝐷 ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦ℎ𝑑𝑑  ∶ 𝜅𝜅𝑆𝑆���𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑 ,𝜅𝜅𝑆𝑆𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑        ∀𝑦𝑦𝑝𝑝𝑝𝑝,∀ℎ𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷  

(131) 

−𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦−1,𝑔𝑔𝑑𝑑 + 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑 ≥ 0                                 ∶ 𝛽𝛽𝑦𝑦𝑔𝑔𝑑𝑑                               ∀𝑦𝑦,∀𝑔𝑔𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷 
(132) 



Final report: " Task 2: Long-Term Models for Integration of RE Technologies"  
 

Dec 2020  129 
 

0 ≥ −𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑; 0 ≤ 𝑀𝑀𝑀𝑀𝑥𝑥𝐺𝐺𝑆𝑆𝑝𝑝𝑔𝑔 − 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑          ∶ �̅�𝜊𝑦𝑦𝑔𝑔𝑑𝑑 ,𝜊𝜊𝑦𝑦𝑔𝑔𝑑𝑑                     ∀𝑦𝑦𝑝𝑝,∀𝑔𝑔𝑑𝑑 ∈  𝐺𝐺𝐺𝐺𝐷𝐷 
(133) 

0  ≤    𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑟𝑟𝑤𝑤ℎ𝑑𝑑   ∀𝑦𝑦𝑝𝑝,∀ℎ𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷     
(134) 

𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑓𝑓𝑑𝑑 = 𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦,𝑤𝑤,𝑟𝑟−1,ℎ𝑓𝑓,𝑑𝑑 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦=1,𝑤𝑤,𝑟𝑟=1,ℎ𝑓𝑓,𝑑𝑑 −  𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑓𝑓𝑑𝑑 + 𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑓𝑓𝑑𝑑 

 ∶ 𝜓𝜓𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑             ∀ℎ𝑓𝑓𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷,∀𝑦𝑦𝑝𝑝𝑝𝑝, 𝑝𝑝 < 𝑝𝑝𝑓𝑓 

 

(135) 

𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑡𝑡𝑑𝑑 = 𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦,𝑤𝑤,𝑟𝑟−𝑀𝑀,ℎ𝑡𝑡,𝑑𝑑 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦=1,𝑟𝑟=1,ℎ𝑡𝑡,𝑑𝑑

+ � ��𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟′′ℎ𝑡𝑡𝑑𝑑 − 𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟′′ℎ𝑡𝑡𝑑𝑑 −  𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟′′ℎ𝑡𝑡𝑑𝑑 + 𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟′′ℎ𝑡𝑡𝑑𝑑�
𝑟𝑟′′

𝑟𝑟

𝑟𝑟′
 

                                                                                                              ∶   𝜓𝜓′
𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑    ∀𝑦𝑦𝑝𝑝,∀ℎ𝑠𝑠,𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷,∀𝑝𝑝, 𝑝𝑝 < 𝑝𝑝𝑓𝑓 

𝑝𝑝𝑝𝑝𝑆𝑆ℎ 𝑝𝑝` = 𝑝𝑝 − 𝑀𝑀 + 1 𝑀𝑀𝑝𝑝𝑑𝑑 𝑝𝑝 ∈ 𝑃𝑃𝑠𝑠, 𝑝𝑝′′ ∈ 𝐻𝐻(𝑝𝑝′,𝑝𝑝′′)  𝑃𝑃𝑠𝑠 = �𝑝𝑝𝑠𝑠|
𝑝𝑝𝑠𝑠
𝑀𝑀 ∈ 𝑍𝑍+� 

 

(136) 

 

Equation (59) represents the expected operational incomes of GENCOs, equations 
(60),(126), (130), (68) and (69) represent upper and lower bounds of the existing 
elements of the system. While equations (62), (15), (65) and (129) represent the lower 
and upper bounds of the candidate generation investments in the system. Equation (132) 
avoids de-investments and (67) defines the non-negativity of new generation. Finally, 
equations (13) and (14) represent the storage balance conditions as proposed in [18].  

On the one hand, equation (14) is considered for long-term storage, i.e. hydro, where 
only interday balance is considered. In this equation, reservoir management is followed 
up across the entire year, as opposed to the rest of constraints in which only intraday 
operations are included. For the hydro vCon represents pumping decisions and vProd the 
production decisions. On the other hand, equation (13) is considered to represent short-
term storage when intraday operation is relevant, i.e. batteries. Variables vCon and vProd 
represent charging and discharging. While the detailed formulation and explanation of 
this representation of storage is presented in [18], we briefly explain it here for clarity. 

The reservoir energy balance is verified for a given time window. For instance, 
consider 4 representative periods, a 168 hour (one week) window and two weeks as 
shown in Figure 42. Thus, the reservoir balance equation (20) will be verified at the end 
of every week e.g. at M1 and M2. Thus, the interday balance is the sum of inflows and 
consumption minus spillage and production for every “representative hour” (p’’), which 
represents each hour of the year (p’). In addition, they are summed over the window M 
until hour (𝑝𝑝 ∈ 𝑃𝑃𝑠𝑠). Please note that 𝐻𝐻(𝑝𝑝′′,𝑝𝑝′) maps each hour of the year to its 
corresponding hour in the appropriate representative day (i.e the first 24 hours of the 
year can be represented by hours 5545-5568 of RP4), and is not to be confused with Γ𝑟𝑟𝑟𝑟,𝑟𝑟 
that tells us which hours of the year are the representative ones (i.e RP4 is made of hours 
5545-5568). 
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Figure 42: Interday Energy Balance. 

SO 

We assume that the SO wants to maximize congestions rents from price differences 
by deciding power flows. 

𝑀𝑀𝑟𝑟𝑔𝑔 Maximize
𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑′ ,𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑝𝑝𝑝𝑝𝑑𝑑

𝐺𝐺𝑡𝑡𝑝𝑝𝑔𝑔𝑆𝑆𝑠𝑠𝑆𝑆𝑝𝑝𝑡𝑡𝑝𝑝𝑅𝑅𝑆𝑆𝑝𝑝𝑆𝑆𝑠𝑠 = � ( 𝜆𝜆𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑 −  𝜆𝜆𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑′)  ∗ 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑝𝑝𝑝𝑝𝑑𝑑′𝑑𝑑
𝑦𝑦,𝑟𝑟,𝑑𝑑

 

Subject to (72)-(77), where 

 

 

𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′ ≥ 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′ ≥ −𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′     
∶  𝜙𝜙�𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′  ,𝜙𝜙𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′∀𝑦𝑦𝑝𝑝𝑝𝑝,∀(𝑑𝑑,𝑑𝑑′) ∈ 𝜕𝜕𝐺𝐺 

(137) 

𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′ = 𝑝𝑝𝑆𝑆𝑝𝑝 ∗
𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑 − 𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆ℎ𝑀𝑀𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑′

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑′
                   

∶  𝜙𝜙𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′    ∀𝑦𝑦𝑝𝑝𝑝𝑝,∀(𝑑𝑑,𝑑𝑑′) ∈ 𝜕𝜕𝐺𝐺 

(138) 

𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′ ≥ −𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′ ∗ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑤𝑤𝑑𝑑𝑑𝑑′                    
∶  𝜁𝜁𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′   ∀𝑦𝑦𝑝𝑝𝑝𝑝,∀(𝑑𝑑,𝑑𝑑′) ∈ 𝜕𝜕𝐺𝐺 

(139) 

−𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′ ≥ −�  𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′ ∗  𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑤𝑤𝑑𝑑𝑑𝑑′�         
∶  𝜁𝜁�̅�𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′     ∀𝑦𝑦𝑝𝑝𝑝𝑝,∀(𝑑𝑑,𝑑𝑑′)  ∈ 𝜕𝜕𝐺𝐺 

(140) 
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−𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′

≥ �−𝑝𝑝𝑆𝑆𝑝𝑝 ∗
𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑 − 𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆ℎ𝑀𝑀𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑′

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑′

− 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′�1 − 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑤𝑤𝑑𝑑𝑑𝑑′��       

∶  𝜏𝜏�̅�𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′   ∀𝑦𝑦𝑝𝑝𝑝𝑝 ,∀(𝑑𝑑,𝑑𝑑′) ∈ 𝜕𝜕𝐺𝐺 

 

(141) 

         𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′ ≥ �   𝑝𝑝𝑆𝑆𝑝𝑝 ∗
𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑 − 𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆ℎ𝑀𝑀𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑′

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑′
   

− 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑′�1− 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′��               ∶ 𝜏𝜏𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′   ∀𝑦𝑦𝑝𝑝𝑝𝑝 ,∀(𝑑𝑑,𝑑𝑑′)  ∈ 𝜕𝜕𝐺𝐺 

 

(142) 

 

 

Equations (72) and (73) represent the DC formulation of the network for existing lines, while equations 
(74)-(77) represent the DC power flow formulations for new lines.  

Market Clearing 

� 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑤𝑤𝑔𝑔𝑑𝑑
𝑔𝑔𝑔𝑔𝐺𝐺𝑔𝑔𝐺𝐺

+ � 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑
𝑔𝑔𝑔𝑔𝐺𝐺𝑔𝑔𝐺𝐺

+ � 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′ 
𝑑𝑑′𝑔𝑔𝐿𝐿𝑔𝑔

− � 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑′𝑑𝑑
𝑑𝑑′𝑔𝑔𝐿𝐿𝑔𝑔

: + �
𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑
𝑝𝑝𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑦𝑦ℎℎ𝑔𝑔𝐺𝐺𝑔𝑔𝐺𝐺

= 𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑

∶ 𝜆𝜆𝑦𝑦𝑟𝑟𝑑𝑑  ∀𝑦𝑦,𝑝𝑝, 𝑝𝑝,𝑑𝑑   

(143) 

 

The simultaneous consideration of the GENCOs, Consumers, SO, and market clearing 
condition represent the wholesale market for the case of perfect and imperfect 
competition (depending on the conjectural variation described in 4.1.1). Additionally, 
we implement a regularization method to compute Big Ms as proposed in [27]. 

 

KKT Conditions  

An equivalent formulation for the lower level optimization problem is presented. KKT 
conditions are the following:  

Primal feasibility conditions. SO: (72) - (78) and Gencos: (60) - (14)    

Dual feasibility conditions.    SO: (79) - (80) and Gencos: (81) - (87)   
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• Complementary slackness conditions40 

Dual feasibility conditions:  (Each equation is defined for 𝑝𝑝 ∈ Γ𝑟𝑟𝑟𝑟,𝑟𝑟, except for equations  

(83) to (87)  

𝜆𝜆𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑′ − 𝜆𝜆𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑 + 𝜙𝜙𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′∈𝐿𝐿𝐿𝐿�𝑑𝑑,𝑑𝑑′� − 𝜙𝜙�𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′∈𝐿𝐿𝐿𝐿�𝑑𝑑,𝑑𝑑′� + 𝜙𝜙𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′∈𝐿𝐿𝐿𝐿(𝑑𝑑,𝑑𝑑′)

+ 𝜁𝜁𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′∈𝐿𝐿𝐺𝐺�𝑑𝑑,𝑑𝑑′�  − 𝜁𝜁�̅�𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′∈𝐿𝐿𝐺𝐺�𝑑𝑑,𝑑𝑑′� + 𝜏𝜏�̅�𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′∈𝐿𝐿𝐺𝐺�𝑑𝑑,𝑑𝑑′�   
−  𝜏𝜏𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′∈𝐿𝐿𝐺𝐺�𝑑𝑑,𝑑𝑑′�     = 0 ∶ 𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′   ∀𝑦𝑦𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑′ 

 

(144) 

�
𝑝𝑝𝑆𝑆𝑝𝑝

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑′
∗ 𝜙𝜙𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′

𝑑𝑑∈𝐿𝐿𝐿𝐿(𝑑𝑑,𝑑𝑑′)

− �
𝑝𝑝𝑆𝑆𝑝𝑝

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑′𝑑𝑑
∗ 𝜙𝜙𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑′𝑑𝑑

𝑑𝑑′∈𝐿𝐿𝐿𝐿(𝑑𝑑,𝑑𝑑′)

+ �
𝑝𝑝𝑆𝑆𝑝𝑝

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑′
∗ 𝜏𝜏�̅�𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′

𝑑𝑑∈𝐿𝐿𝐺𝐺(𝑑𝑑,𝑑𝑑′)

− �
𝑝𝑝𝑆𝑆𝑝𝑝

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑′
∗ 𝜏𝜏𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑′𝑑𝑑

𝑑𝑑′∈𝐿𝐿𝐺𝐺(𝑑𝑑,𝑑𝑑′)

− �
𝑝𝑝𝑆𝑆𝑝𝑝

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑′𝑑𝑑
∗ 𝜏𝜏�̅�𝑦𝑤𝑤𝑟𝑟𝑑𝑑′𝑑𝑑

𝑑𝑑′∈𝐿𝐿𝐺𝐺(𝑑𝑑′,𝑑𝑑)

+ �
𝑝𝑝𝑆𝑆𝑝𝑝

𝑝𝑝𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆𝑑𝑑′𝑑𝑑
∗ 𝜏𝜏𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′

𝑑𝑑∈𝐿𝐿𝐺𝐺(𝑑𝑑,𝑑𝑑′)

= 0

∶  𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑,∀𝑦𝑦𝑝𝑝𝑝𝑝𝑑𝑑 

 

 

(145) 

�(𝑌𝑌 − 𝑦𝑦 + 1) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑔𝑔
𝑔𝑔𝑦𝑦𝑑𝑑

+ �(𝑌𝑌 − 𝑦𝑦) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑔𝑔
𝑔𝑔𝑦𝑦𝑑𝑑

+ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑔𝑔 ∗ 𝜔𝜔�𝑦𝑦𝑟𝑟𝑔𝑔𝑑𝑑

+ 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑝𝑝𝑝𝑝𝑔𝑔𝑑𝑑 ∗ 𝜔𝜔𝑝𝑝�����𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑 + 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝ℎ ∗ 𝜇𝜇𝑆𝑆�𝑦𝑦𝑝𝑝𝑝𝑝ℎ𝑑𝑑 + 𝑝𝑝𝑀𝑀𝑀𝑀𝑥𝑥𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝ℎ ∗ 𝐺𝐺𝑇𝑇𝐷𝐷

∗ 𝜅𝜅𝑆𝑆�𝑦𝑦𝑝𝑝𝑝𝑝ℎ𝑑𝑑 + 𝛽𝛽𝑦𝑦𝑔𝑔𝑑𝑑 − 𝛽𝛽𝑦𝑦+1,𝑔𝑔𝑑𝑑   − �̅�𝜊𝑦𝑦𝑔𝑔𝑑𝑑 + 𝜊𝜊𝑦𝑦𝑔𝑔𝑑𝑑      
= 0                                                                          
∶ 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑  ∀𝑦𝑦𝑔𝑔𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷 

 

(146) 

−𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦𝑟𝑟𝑑𝑑 + 𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑑𝑑 − 𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑡𝑡𝑝𝑝𝑆𝑆 ∗ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑 = 0 

𝜄𝜄𝑦𝑦,𝑤𝑤,𝑟𝑟,𝑑𝑑: 𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑  ∀𝑦𝑦𝑝𝑝𝑔𝑔𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷 

(147) 

 

For equations  

(83) to (87) we define 𝑝𝑝′′ = 𝑝𝑝′ + 1 −𝑀𝑀 𝑃𝑃𝑀𝑀 = �𝑝𝑝|𝑝𝑝 ∈ Γ𝑟𝑟𝑟𝑟,𝑟𝑟�, 𝑃𝑃𝑠𝑠 = �𝑝𝑝𝑠𝑠| 𝑟𝑟𝑡𝑡
𝑀𝑀
∈ 𝑍𝑍+� ,

𝑀𝑀𝑝𝑝𝑑𝑑 𝑃𝑃𝑆𝑆 = 𝑃𝑃𝑠𝑠 ∪  𝑃𝑃𝑀𝑀 

                                                      
40 Linearized conditions can be found in ANNEX 
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� � 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑆𝑆𝑤𝑤 ∗ 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟 ∗ (−𝐹𝐹𝑆𝑆𝑆𝑆𝑝𝑝𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑡𝑡
𝑦𝑦,(𝑟𝑟,𝑟𝑟𝑟𝑟)∈Γ𝑟𝑟𝑟𝑟,𝑟𝑟,𝑑𝑑

+ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑

∗
𝜕𝜕𝜆𝜆𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑∈(𝐺𝐺𝑔𝑔𝐺𝐺)

𝜕𝜕𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑
+)� + 𝜆𝜆𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑∈(𝐺𝐺𝑔𝑔𝐺𝐺) −  �̅�𝜌𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑∈(𝐺𝐺𝐿𝐿𝐺𝐺)

+ 𝜌𝜌𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑∈(𝐺𝐺𝐿𝐿𝐺𝐺) − 𝜔𝜔�𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑∈(𝐺𝐺𝐺𝐺𝐺𝐺) + 𝜔𝜔𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑∈(𝐺𝐺𝐿𝐿𝐺𝐺)

+ � �𝜓𝜓𝑦𝑦𝑟𝑟ℎ�
𝑟𝑟′

𝑟𝑟′′
= 0   

 ∶ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑    ∀𝑦𝑦,𝑔𝑔,𝑑𝑑 ∈  (𝐺𝐺𝐺𝐺𝐷𝐷) ∀𝑝𝑝′ ∈ 𝐻𝐻(𝑝𝑝′,𝑝𝑝) /   𝑝𝑝 ∈ 𝑃𝑃𝑀𝑀,  𝑝𝑝′ ∈  𝑃𝑃𝑠𝑠 

 

 

 

 

 

(148) 

� � 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑆𝑆𝑤𝑤 ∗ 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟 ∗ (
𝑦𝑦,(𝑟𝑟,𝑟𝑟𝑟𝑟)∈Γ𝑟𝑟𝑟𝑟,𝑟𝑟,𝑑𝑑

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑 ∗
𝜕𝜕𝜆𝜆𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑∈(𝐺𝐺𝑔𝑔𝐺𝐺)

𝜕𝜕𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑
+)�

+ 𝜆𝜆𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑∈(𝐺𝐺𝑔𝑔𝐺𝐺) −  𝜌𝜌𝑝𝑝����𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑∈(𝐺𝐺𝐿𝐿𝐺𝐺) +  𝜌𝜌𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑∈(𝐺𝐺𝐿𝐿𝐺𝐺)

− 𝜔𝜔𝑝𝑝�����𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑∈(𝐺𝐺𝐺𝐺𝐺𝐺) + 𝜔𝜔𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑∈(𝐺𝐺𝐿𝐿𝐺𝐺) + � �𝜓𝜓𝑦𝑦𝑟𝑟ℎ�
𝑟𝑟′

𝑟𝑟′′
= 0   

 ∶ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑    ∀𝑦𝑦,𝑔𝑔,𝑑𝑑 ∈  (𝐺𝐺𝐺𝐺𝐷𝐷) ∀𝑝𝑝′ ∈ 𝐻𝐻(𝑝𝑝′,𝑝𝑝) /   𝑝𝑝 ∈ 𝑃𝑃𝑀𝑀,  𝑝𝑝′ ∈  𝑃𝑃𝑠𝑠 

 

 

 

 

(149) 

�̅�𝜅𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑 − 𝜅𝜅𝑦𝑦𝑤𝑤𝑔𝑔𝑟𝑟ℎ𝑑𝑑 + 𝜓𝜓𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑓𝑓𝑑𝑑 + � �𝜓𝜓′
𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑�

𝑟𝑟′

𝑟𝑟′′
= 0 

: 𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑     ∀𝑝𝑝′ ∈ 𝐻𝐻(𝑝𝑝′,𝑝𝑝),𝑝𝑝 ∈ 𝑃𝑃𝑀𝑀,  𝑝𝑝′ ∈  𝑃𝑃𝑠𝑠,∀𝑦𝑦𝑝𝑝,ℎ𝑑𝑑 ∈  (𝐺𝐺𝐺𝐺𝐷𝐷) 

 

 

(150) 

−𝜇𝜇𝑦𝑦𝑟𝑟ℎ𝑑𝑑 + 𝜇𝜇𝑦𝑦𝑟𝑟ℎ𝑑𝑑 + � 𝜓𝜓𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑
𝑟𝑟′

𝑟𝑟′′
= 0 

: 𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑    ∀𝑝𝑝′ ∈ 𝐻𝐻(𝑝𝑝′,𝑝𝑝)  𝑝𝑝 ∈ 𝑃𝑃𝑀𝑀,  𝑝𝑝′ ∈  𝑃𝑃𝑠𝑠,∀𝑦𝑦𝑝𝑝,ℎ𝑑𝑑 ∈  (𝐺𝐺𝐺𝐺𝐷𝐷) 

 

 

 

(151) 

−𝜇𝜇𝑆𝑆���𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑 + 𝜇𝜇𝑆𝑆𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑 − 𝜇𝜇𝑆𝑆�𝑦𝑦𝑝𝑝𝑝𝑝ℎ𝑑𝑑 + 𝜇𝜇𝑆𝑆
𝑦𝑦𝑝𝑝𝑝𝑝ℎ𝑑𝑑

+ 𝜓𝜓𝑦𝑦𝑤𝑤𝑟𝑟∈𝑣𝑣𝐵𝐵,ℎ𝑓𝑓𝑑𝑑 + 𝜓𝜓𝑦𝑦𝑤𝑤,𝑟𝑟+1∈𝑣𝑣𝐵𝐵,ℎ𝑓𝑓𝑑𝑑

+ 𝜓𝜓′
𝑦𝑦𝑤𝑤𝑟𝑟∈𝑣𝑣𝑡𝑡,ℎ𝑑𝑑 − 𝜓𝜓′

𝑦𝑦𝑤𝑤,𝑟𝑟+𝑀𝑀|𝑟𝑟∈𝑣𝑣𝑡𝑡 ,ℎ𝑑𝑑 = 0  
(152) 
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: 𝑝𝑝𝜕𝜕𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑∀𝑝𝑝 ∈ 𝑃𝑃𝑆𝑆,∀𝑦𝑦𝑝𝑝ℎ𝑑𝑑 ∈ 𝐺𝐺𝐺𝐺𝐷𝐷 

 

Equivalent Optimization problem  

 

The KKT conditions in section 0 can also be written as an optimization problem by 
following the results of  [28]. This optimization problem would be equivalent to 
minimizing the Extended Social Welfare and can be written as follows:  

Minimize
𝐿𝐿𝐿𝐿𝐷𝐷

𝐺𝐺𝑆𝑆𝑝𝑝 = 𝐺𝐺𝑝𝑝 + 𝑝𝑝𝐺𝐺 + 𝐺𝐺𝐺𝐺 −  𝑝𝑝𝐷𝐷  (153) 

 
• Subject to  (60) - (78)  (154) - (159)    

 

 

𝜕𝜕𝜕𝜕𝑝𝑝
≔  �𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑 , 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑 , 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑔𝑔𝑑𝑑 ,𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑 ,𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑤𝑤𝑟𝑟ℎ𝑑𝑑 ,𝑝𝑝𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑𝑑𝑑′ ,𝑝𝑝𝑇𝑇ℎ𝑆𝑆𝑆𝑆𝑀𝑀𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑  � 

 
(154) 

𝑝𝑝𝐷𝐷 ≔ � 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑆𝑆𝑝𝑝 ∗𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝 ∗ �𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦𝑟𝑟𝑑𝑑 ∗ 𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑 −
𝑝𝑝𝐷𝐷𝑆𝑆𝑝𝑝𝑀𝑀𝑝𝑝𝑑𝑑𝑦𝑦𝑤𝑤𝑟𝑟𝑑𝑑2

2 �
𝑦𝑦,𝑤𝑤,(𝑟𝑟,𝑟𝑟𝑟𝑟)∈Γ𝑟𝑟𝑟𝑟,𝑟𝑟,𝑑𝑑

 (155) 

 

𝐺𝐺𝐺𝐺 ≔  � 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑆𝑆𝑝𝑝 ∗ 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝 ∗ 𝜃𝜃𝑔𝑔
𝑦𝑦,𝑝𝑝,(𝑝𝑝,𝑟𝑟𝑝𝑝)∈Γ𝑟𝑟𝑝𝑝,𝑝𝑝,𝑆𝑆,𝑑𝑑

∗ (𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑝𝑝𝑝𝑝,𝑔𝑔𝑑𝑑∈𝐺𝐺𝐺𝐺𝐷𝐷 −𝑝𝑝𝐺𝐺𝑡𝑡𝑝𝑝𝑦𝑦𝑝𝑝𝑝𝑝,ℎ𝑑𝑑∈𝐺𝐺𝐺𝐺𝐷𝐷)2
 

(156) 

𝑝𝑝𝐺𝐺: = � 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑆𝑆𝑤𝑤 ∗ 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟 ∗ 𝑝𝑝𝐹𝐹𝐺𝐺𝑡𝑡𝑠𝑠𝑆𝑆𝑡𝑡 ∗ 𝑝𝑝𝑃𝑃𝑟𝑟𝑡𝑡𝑑𝑑𝑦𝑦𝑟𝑟𝑡𝑡𝑑𝑑
𝑦𝑦,𝑤𝑤,(𝑟𝑟,𝑟𝑟𝑟𝑟)∈Γ𝑟𝑟𝑟𝑟,𝑟𝑟,𝑡𝑡,𝑑𝑑

 (157) 

𝜕𝜕𝑝𝑝 ≔ � (𝑌𝑌 − 𝑦𝑦 + 1) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑑𝑑𝑑𝑑′ ∗ �𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦𝑑𝑑𝑑𝑑′ − 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝜕𝜕𝑝𝑝𝑝𝑝𝑆𝑆𝑦𝑦−1,𝑑𝑑𝑑𝑑′�
𝑦𝑦𝑑𝑑𝑑𝑑′

 (158) 

𝐺𝐺𝑝𝑝: = �(𝑌𝑌 − 𝑦𝑦 + 1) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑔𝑔   ∗ � 𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦𝑔𝑔𝑑𝑑  −   𝑝𝑝𝑁𝑁𝑆𝑆𝑝𝑝𝐺𝐺𝑆𝑆𝑝𝑝𝑦𝑦−1,𝑔𝑔𝑑𝑑�
𝑔𝑔𝑦𝑦𝑑𝑑

 (159) 
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As we can see the objective function is the same as a welfare maximization problem but 
it additionally includes EC which reflects the strategic behavior of agents by the 
conjectural variation 𝜃𝜃𝑔𝑔. 

 

4. Min-Max Regret Proactive Model (RPM) 

We now compute a type of robust programing that considers the degree of robustness 
in the objective function. In this section we consider the min-max regret programming, 
this is an adjusted technique that is less conservative than the min-max programming 
where the system is planned against the worst case scenario. On the contrary, this 
framework tries to minimize the maximum regret of the solution in any operational 
scenario. We consider define the lower level and upper level min-max regret 
programming. 

Lower Level Min-Max Regret (LLR) 

We consider the min-max regret in the lower-level. Therefore, the regret is considered 
as the difference between the total Extended Social Welfare (defined in (40)) at each 
scenario 𝐺𝐺𝑆𝑆𝑝𝑝𝑡𝑡 and the perfect information optimal solution 𝐺𝐺𝑆𝑆𝑝𝑝∗

𝑡𝑡 of that scenario. By 
the perfect information solution scenario s we mean the solution of the Deterministic 
Proactive Model (DPM) when it is considered that only that scenario s will occur (i.e., 
pProb(s)=1). Compared to the stochastic approach, in this methodology we do not need 
to have a probability distribution of the scenarios. 

 

Minimize
𝐿𝐿𝐷𝐷𝐷𝐷

    𝐺𝐺𝑝𝑝 + Maximize
𝑡𝑡

 ( 𝑝𝑝𝐺𝐺 + 𝐺𝐺𝐺𝐺 −  𝑝𝑝𝐷𝐷 − 𝐺𝐺𝑆𝑆𝑝𝑝∗
𝑡𝑡) 

 

(160) 

Problem (160) can be transform by adding the auxiliary variable 𝜍𝜍  and the set of 
equation (162):  

 

Minimize
𝐿𝐿𝐷𝐷𝐷𝐷

    𝐺𝐺𝑝𝑝 + 𝜍𝜍 

(161) 

 

S.t and LL 

𝑝𝑝𝐺𝐺 + 𝐺𝐺𝐺𝐺 −  𝑝𝑝𝐷𝐷 − 𝐺𝐺𝑆𝑆𝑝𝑝∗
𝑡𝑡 ≤ 𝜍𝜍 ∀ 𝑠𝑠 ∈ 𝑆𝑆 

(162) 
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Complete Problem with Lower Level Min-Max Regret 

In the complete problem, the upper level would be constrained by the LLR defined in 
previous section.  

Minimize
𝑣𝑣𝑣𝑣𝑔𝑔𝑤𝑤𝐿𝐿𝑣𝑣𝑛𝑛𝑔𝑔𝑦𝑦𝑑𝑑𝑑𝑑′

−(𝑝𝑝𝐷𝐷 − (𝑝𝑝𝐺𝐺 + 𝜕𝜕𝑝𝑝 + 𝐺𝐺𝑝𝑝))   
(163) 

s.t LLR 

 

Minimize
𝐿𝐿𝐷𝐷𝐷𝐷

    𝐺𝐺𝑝𝑝 + 𝜍𝜍 

(164) 

S.t (53)  and LL 

𝑝𝑝𝐺𝐺 + 𝐺𝐺𝐺𝐺 −  𝑝𝑝𝐷𝐷 − 𝐺𝐺𝑆𝑆𝑝𝑝∗
𝑡𝑡 ≤ 𝜍𝜍 ∀ 𝑠𝑠 ∈ 𝑆𝑆 

 

(165) 

 

Upper level Min-Max Regret (ULR) 

 

We consider the min-max regret in the lower-level. To do so, we follow the same logic 
in 0.Therefore, the regret is considered as the difference between the total Social 
Welfare (defined in (2)) at each scenario 𝑆𝑆𝑝𝑝𝑡𝑡 and the perfect information optimal 
solution 𝑆𝑆𝑝𝑝∗

𝑡𝑡 of that scenario. 

 

Minimize
𝑣𝑣𝑣𝑣𝑔𝑔𝑤𝑤𝐿𝐿𝑣𝑣𝑛𝑛𝑔𝑔𝑦𝑦𝑑𝑑𝑑𝑑′

−(+𝜕𝜕𝑝𝑝 + 𝐺𝐺𝑝𝑝)  + Maximize
𝑡𝑡

 ( 𝑝𝑝𝐺𝐺 −  𝑝𝑝𝐷𝐷 − 𝑆𝑆𝑝𝑝∗
𝑡𝑡)  
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Complete Problem with Upper Level Regret 

 

Minimize
𝐿𝐿𝐷𝐷𝐷𝐷

−(+𝜕𝜕𝑝𝑝 + 𝐺𝐺𝑝𝑝) + 𝜍𝜍 

(166) 

S.t (167)  and LL 

𝑝𝑝𝐺𝐺 −  𝑝𝑝𝐷𝐷 − 𝑆𝑆𝑝𝑝∗
𝑡𝑡 ≤ 𝜍𝜍 ∀ 𝑠𝑠 ∈ 𝑆𝑆 

 

(167) 

5.3 Case Study 

In order to test this model we consider a IEEE-24 modified system as the one considered 
in [10]. As seen in Figure 40 this system is made up of 24 buses, 33 existing lines, and 12 
existing conventional generators. Continuous lines represent existing elements and 
dotes lines represent candidates lines. We consider 3 candidate conventional generators 
at nodes 3, 10, and 19, as well as 6 wind candidate generators at nodes 3,5,7, 16,21,23. 
Additionally, we consider 4 candidate batteries at nodes 1, 3 ,15  and 1 hydro candidate 
at node 19.  

 
Figure 43: IEEE-24 

We consider 4 representative days and 3 wind profiles scenarios for each wind candidate 
generator. We consider different profiles for the wind generator located at the south 
(nodes 3,5,7), as seen in Figure 44: Southern Normalized wind profiles per 
GeneratorFigure 44, and some other profiles for those located in the north (nodes 
16,21,23) as seen in Figure 45. 
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We consider the following probabilities for the scenarios: 
     Table XXXII: Scenarios Probability 

S1 S2 S3 

0.24 0.38 0.38 

 

 
Figure 44: Southern Normalized wind profiles per Generator 

 

 
Figure 45: Northern Normalized wind profiles per Generator 
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5.4 Results 

We initially study the planning results when considering perfect competition or Cournot 
oligopoly in the lower level, both for the deterministic and stochastic case. We thus 
define six different types of problems: 

Deterministic Perfect Competition (DT-PC), Deterministic Cournot Oligopoly (DT-CO), 
Stochastic Perfect Competition (ST-PC) and stochastic Cournot Oligopoly (ST-CO). 

 
Table XXXIII: Cases Definition 

DT-PC DT-CO ST-PC ST-CO RM-PC RM-CO 

Deterministic 
optimization 
with perfect 
competition 
in the lower 
level 

Deterministic 
optimization 
with Cournot 
oligopoly in 
the lower 
level 

Stochastic 
optimization 
with perfect 
competition 
in the lower 
level 

Stochastic 
optimization 
with Cournot 
oligopoly in 
the lower 
level 

Minimizing 
Maximum 
Regret with 
perfect 
competition 
in the lower 
level 

Minimizing 
Maximum 
Regret with 
Cournot 
Oligopoly in 
the lower 
level 

 

 In Figure 46 we see the total capacity invested in wind and storage technologies for 
every case. Please note that the Wind capacity is divided by 10 in the graph (scaling 
purposes). First, only one line is invested for the Perfect Competition (_PC) cases, there 
is lower investment in wind and therefore higher investment in storage compared to the 
Cournot Oligopoly (CO) case. This result can be explained because in the CO case no 
transmission line is built and therefore more generation capacity is needed to supply the 
demand. Additionally, in general the capacity invested in the stochastic (_SC) cases is 
lower than in the deterministic (DT). This is clearly seen because the higher variability of 
wind profiles makes the wind investment less profitable. . It is interesting to note he RM 
scenario is the most extreme case, where there is PC it is the scenario with the highest 
investment while in the CO case it is the one with the lowest investment, this suggest 
that in the CO case the best way minimize the maximum regret is to install the lower 
wind and storage capacity to limit the market power while in the PC case installing more 
capacity leads to minimize the regret as the capacity would be optimally utilized.   

We now compare the results in terms of the expected social welfare. As seen in Figure 
47. The total welfare is higher in the PC cases compared to the CO cases, in part this is 
given because more demand in supplied in the PC case compared to the CO case. 
Additionally, the producer surplus is higher in the CO case than in the PC case. Finally, 
please note that the difference in the total welfare between the deterministic, min-max 
regret and stochastic case is very small, it accounts to less than the 0.1%, while there is 
a difference of the 10% between the PC cases compared to the CO case. This might 
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suggest that, for this case study, the imperfect competition has a higher impact on the 
system planning than the uncertainty of the renewable sources. 

 
Figure 46: Capacity Invested 

 
Figure 47: Total Surplus 

 

 

[1] R. Hemmati, R.-A. Hooshmand, and A. Khodabakhshian, “Comprehensive review 
of generation and transmission expansion planning,” IET Gener. Transm. Distrib., 
vol. 7, no. 9, pp. 955–964, 2013. 

[2] A. J. Conejo, L. Baringo Morales, S. J. Kazempour, and A. S. Siddiqui, Investment in 
Electricity Generation and Transmission. 2016. 

[3] V. Krishnan et al., “Co-optimization of electricity transmission and generation 
resources for planning and policy analysis: review of concepts and modeling 

0 0 0
50 50 50

238,68
198,00 219,23

149,78 127,89 137,17

40,42

52,02
40,27

116,24 167,65
111,22

0

50

100

150

200

250

300

350

DT_CO RM_CO SC_CO DT_PC RM_PC SC_PC

CO PC

8 - Suma de Storage

8 - Suma de Wind_10

8 - Suma de Lines



Final report: " Task 2: Long-Term Models for Integration of RE Technologies"  
 

Dec 2020  141 
 

approaches,” Energy Syst., vol. 7, no. 2, pp. 297–332, 2016. 

[4] Z. Hu, F. Zhang, and B. Li, “Transmission expansion planning considering the 
deployment of energy storage systems,” IEEE Power Energy Soc. Gen. Meet., pp. 
1–6, 2012. 

[5] R. Loulou, G. Goldstein, and K. Noble, “Documentation for the MARKAL Family of 
Models,” Int. Energy Agency, no. October, pp. 1–389, 2004. 

[6] E. P. D. Office, E. P. D. Office, I. Analysis, and I. Analysis, “Model Documentation 
Coal Market Module of the National Energy Modeling System,” vol. 060, no. 
January, 2001. 

[7] U.S. Environmental Protection Agency and C. A. M. Division, “Documentation for 
EPA Base Case v.4.10 Using the Integrated Planning Model,” 2010. [Online]. 
Available: https://www.epa.gov/sites/production/files/2015-
07/documents/chapter_1_introduction.pdf. 

[8] W. Cole et al., “Variable Renewable Energy in Long-Term Planning Models : A 
Multi-Model Perspective Variable Renewable Energy in Long-term Planning 
Models : A Multi-model Perspective,” 2017. 

[9] W. Short et al., “Regional Energy Deployment System ( ReEDS),” Nrel/Tp-6a20-
46534, no. November, pp. 1–85, 2011. 

[10] EPRI, “US-REGEN Model Documentation,” 2018. [Online]. Available: 
https://www.epri.com/#/pages/product/3002010956/?lang=en-US. 

[11] O. J. Guerra, D. A. Tejada, and G. V. Reklaitis, “An optimization framework for the 
integrated planning of generation and transmission expansion in interconnected 
power systems,” Appl. Energy, vol. 170, pp. 1–21, 2016. 

[12] J. Nelson et al., “High resolution modeling of the western North American power 
system,” Energy Policy, vol. 43, pp. 436–447, 2012. 

[13] S. You, S. W. Hadley, M. Shankar, and Y. Liu, “Co-optimizing generation and 
transmission expansion with wind power in large-scale power grids—
Implementation in the US Eastern Interconnection,” Electr. Power Syst. Res., vol. 
133, pp. 209–218, 2016. 

[14] B. Alizadeh and S. Jadid, “Reliability constrained coordination of generation and 
transmission expansion planning in power systems using mixed integer 
programming,” IET Gener. Transm. Distrib., vol. 5, no. 9, p. 948, 2011. 

[15] M. Haller, “CO 2 Mitigation and Power System Integration of Fluctuating 
Renewable Energy Sources: A Multi-Scale Modeling Approach,” 



 Final report: " Task 2: Long-Term Models for Integration of RE Technologies" 
 

142  Dec 2020 
 

Dissertationsschrift, pp. 1–180, 2012. 

[16] S. Akbar, E. Khob, and M. Moazzami, “Advanced model for joint generation and 
transmission expansion planning including reactive power and security 
constraints of the network integrated with wind turbine,” Int. Trans. Electr. 
Energy Syst., no. November, pp. 1–20, 2018. 

[17] H. Zhang, H. Cheng, L. Liu, S. Zhang, Q. Zhou, and L. Jiang, “Coordination of 
generation, transmission and reactive power sources expansion planning with 
high penetration of wind power,” Int. J. Electr. Power Energy Syst., vol. 108, no. 
April 2018, pp. 191–203, 2019. 

[18] I. Konstantelos and G. Strbac, “Valuation of flexible transmission investment 
options under uncertainty,” IEEE Trans. Power Syst., vol. 30, no. 2, pp. 1047–1055, 
2015. 

[19] H. Mavalizadeh, A. Ahmadi, F. H. Gandoman, P. Siano, and H. A. Shayanfar, 
“Multiobjective robust power system expansion planning considering generation 
units retirement,” IEEE Syst. J., vol. 12, no. 3, pp. 2664–2675, 2018. 

[20] J. Aghaei, N. Amjady, A. Baharvandi, and M. A. Akbari, “Generation and 
transmission expansion planning: MILP-based probabilistic model,” IEEE Trans. 
Power Syst., vol. 29, no. 4, pp. 1592–1601, 2014. 

[21] T. Qiu, B. Xu, Y. Wang, Y. Dvorkin, and D. S. Kirschen, “Stochastic Multistage 
Coplanning of Transmission Expansion and Energy Storage,” IEEE Trans. Power 
Syst., vol. 32, no. 1, pp. 643–651, 2017. 

[22] A. Khodaei and M. Shahidehpour, “Microgrid-based co-optimization of 
generation and transmission planning in power systems,” IEEE Trans. Power Syst., 
vol. 28, no. 2, pp. 1582–1590, 2013. 

[23] C. Bustos, E. Sauma, S. de la Torre, J. A. Aguado, J. Contreras, and D. Pozo, “Energy 
storage and transmission expansion planning: substitutes or complements?,” IET 
Gener. Transm. Distrib., vol. 12, no. 8, pp. 1738–1746, 2018. 

[24] H. Shaoyun, C. Haozhong, Z. Pingling, Z. Jianping, and J. Lu, “Composite generation 
and transmission expansion planning with second order conic relaxation of AC 
power flow,” Asia-Pacific Power Energy Eng. Conf. APPEEC, vol. 2016-Decem, no. 
51337005, pp. 1688–1693, 2016. 

[25] E. Spyrou, J. Ho, B. Hobbs, R. Johnson, and J. McCalley, “What are the Benefits of 
Co-optimizing Transmission and Generation Investment? Eastern Interconnection 
Case Study,” IEEE Trans. Power Syst., vol. 8950, no. c, pp. 1–1, 2017. 

[26] F. D. Munoz, E. E. Sauma, and B. F. Hobbs, “Approximations in power transmission 



Final report: " Task 2: Long-Term Models for Integration of RE Technologies"  
 

Dec 2020  143 
 

planning: Implications for the cost and performance of renewable portfolio 
standards,” J. Regul. Econ., vol. 43, no. 3, pp. 305–338, 2013. 

[27] H. Zhang, V. Vittal, G. T. Heydt, and J. Quintero, “A mixed-integer linear 
programming approach for multi-stage security-constrained transmission 
expansion planning,” IEEE Trans. Power Syst., 2012. 

[28] M. Khakpoor, M. Jafari-Nokandi, and A. A. Abdoos, “Dynamic generation and 
transmission expansion planning in the power market–based on a multiobjective 
framework,” Int. Trans. Electr. Energy Syst., vol. 27, no. 9, pp. 1–17, 2017. 

[29] T. Akbari and M. T. Bina, “Approximated MILP model for AC transmission 
expansion planning: Global solutions versus local solutions,” IET Gener. Transm. 
Distrib., 2016. 

[30] T. Akbari and M. Tavakoli Bina, “A linearized formulation of AC multi-year 
transmission expansion planning: A mixed-integer linear programming 
approach,” Electr. Power Syst. Res., 2014. 

[31] E. Camponogara, K. C. de Almeida, and R. Hardt, “Piecewise-linear 
approximations for a non-linear transmission expansion planning problem,” IET 
Gener. Transm. Distrib., 2015. 

[32] A. Castillo, P. Lipka, J. P. Watson, S. S. Oren, and R. P. O’Neill, “A Successive Linear 
Programming Approach to Solving the IV-ACOPF,” IEEE Trans. Power Syst., 2016. 

[33] J. A. Taylor and F. S. Hover, “Linear relaxations for transmission system planning,” 
IEEE Trans. Power Syst., 2011. 

[34] H. Le Cadre, I. Mezghani, and A. Papavasiliou, “A game-theoretic analysis of 
transmission-distribution system operator coordination,” Eur. J. Oper. Res., vol. 
274, no. 1, pp. 317–339, 2019. 

[35] S. K. K. Ng, J. Zhong, and C. W. Lee, “A Game-Theoretic Study of the Strategic 
Interaction between Generation and Transmission Expansion Planning,” 2009 
IEEE/PES Power Syst. Conf. Expo., pp. 1–10, 2009. 

[36] E. E. Sauma and S. S. Oren, “Proactive planning and valuation of transmission 
investments in restructured electricity markets,” J. Regul. Econ., vol. 30, no. 3, pp. 
358–387, 2006. 

[37] M. Mahdavi, L. H. Macedo, and R. Romero, “Transmission and Generation 
Expansion Planning Considering System Reliability and Line Maintenance,” 26th 
Iran. Conf. Electr. Eng. ICEE 2018, pp. 1005–1010, 2018. 

[38] L. P. Garcés, A. J. Conejo, R. García-Bertrand, and R. Romero, “A bilevel approach 



 Final report: " Task 2: Long-Term Models for Integration of RE Technologies" 
 

144  Dec 2020 
 

to transmission expansion planning within a market environment,” IEEE Trans. 
Power Syst., vol. 24, no. 3, pp. 1513–1522, 2009. 

[39] V. Krishnan and J. D. McCalley, “Building Foresight in Long-Term Infrastructure 
Planning Using End-Effect Mitigation Models,” IEEE Syst. J., vol. 11, no. 4, pp. 
2040–2051, 2015. 

[40] C. Roldán, A. A. Sánchez de la Nieta, R. García-Bertrand, and R. Mínguez, “Robust 
dynamic transmission and renewable generation expansion planning: Walking 
towards sustainable systems,” Int. J. Electr. Power Energy Syst., vol. 96, pp. 52–
63, 2018. 

[41] H. Oh, “A New Network Reduction Methodology for Power System Planning 
Studies,” IEEE Trans. Power Syst., 2010. 

[42] Q. Ploussard, L. Olmos, and A. Ramos, “An efficient network reduction method 
for transmission expansion planning using multicut problem and kron reduction,” 
IEEE Trans. Power Syst., 2018. 

[43] Q. Ploussard, L. Olmos, and A. Ramos, “An Operational State Aggregation 
Technique for Transmission Expansion Planning Based on Line Benefits,” IEEE 
Trans. Power Syst., 2017. 

[44] D. Shi and D. J. Tylavsky, “A Novel Bus-Aggregation-Based Structure-Preserving 
Power System Equivalent,” IEEE Trans. Power Syst., 2015. 

[45] D. A. Tejada-Arango, M. Domeshek, S. Wogrin, and E. Centeno, “Enhanced 
Representative Days and System States Modeling for Energy Storage Investment 
Analysis,” IEEE Trans. Power Syst., vol. 8950, no. c, pp. 1–1, 2018. 

[46] S. Wogrin, P. Duenas, A. Delgadillo, and J. Reneses, “A new approach to model 
load levels in electric power systems with high renewable penetration,” IEEE 
Trans. Power Syst., 2014. 

[47] S. Pineda and J. M. Morales, “Chronological time-period clustering for optimal 
capacity expansion planning with storage,” IEEE Trans. Power Syst., vol. 33, no. 6, 
pp. 7162–7170, 2018. 

[48] F. de Sisternes and M. Webster, “Optimal Selection of Sample Weeks for 
Approximating the Net Load in Generation Planning Problems,” esd.mit.edu, 
2013. 

[49] S. Wogrin and D. F. Gayme, “Optimizing Storage Siting, Sizing, and Technology 
Portfolios in Transmission-Constrained Networks,” IEEE Trans. Power Syst., vol. 
30, no. 6, pp. 3304–3313, 2015. 



Final report: " Task 2: Long-Term Models for Integration of RE Technologies"  
 

Dec 2020  145 
 

[50] R. Fernández-Blanco, Y. Dvorkin, B. Xu, Y. Wang, and D. S. Kirschen, “Optimal 
Energy Storage Siting and Sizing: A WECC Case Study,” IEEE Trans. Sustain. Energy, 
vol. 8, no. 2, pp. 733–743, 2017. 

[51] Y. Song, F. Zhang, and Z. Hu, “Mixed-integer linear model for transmission 
expansion planning with line losses and energy storage systems,” IET Gener. 
Transm. Distrib., vol. 7, no. 8, pp. 919–928, 2013. 

[52] M. Ventosa, Á. Baíllo, M. Rivier, and A. Ramos, “Electricity market modelling 
trends,” Energy Policy, vol. 3, no. 7. pp. 897–913, 2005. 

[53] C. J. Day, B. F. Hobbs, and J. S. Pang, “Oligopolistic competition in power networks: 
A conjectured supply function approach,” IEEE Trans. Power Syst., vol. 17, no. 3, 
pp. 597–607, 2002. 

[54] H. Hashimoto, “A spatial Nash equilibrium model,” 1985. 

[55] E. Economics, “Economic Inefficiency of Passive Transmission Rights in Congested 
Electricity Systems with Competitive Generation Author ( s ): Shmuel S . Oren 
Published by : International Association for Energy Economics Stable URL : 
http://www.jstor.org/stable/41322718,” vol. 18, no. 1, pp. 63–83, 1997. 

[56] J. Wei and Y. Smeers, “Spatial Oligopolistic Electricity Models with Cournot 
Generators and Regulated Transmission Prices,” Oper. Res. Publ., vol. 47, no. 1, 
pp. 102–112, 1999. 

[57] B. WILLEMS, “Cournot Competitoin in the Electircity Market with Transmission 
Constraints,” Public Econ., no. October, 2000. 

[58] B. F. Hobbs, “Linear complementarity models of nash-Cournot competition in 
bilateral and POOLCO power markets,” IEEE Trans. Power Syst., vol. 16, no. 2, pp. 
194–202, 2001. 

[59] H. Von Stackelberg, Market structure and equilibrium. 2011. 

[60] D. Pozo, E. Sauma, and J. Contreras, “Basic theoretical foundations and insights 
on bilevel models and their applications to power systems,” Ann. Oper. Res., vol. 
254, no. 1–2, pp. 303–334, 2017. 

[61] C. Metzler, “Nash-Cournot Equilibria in Power Markets on a Linearized DC 
Network with Arbitrage :,” Geography, pp. 123–150, 2003. 

[62] K. Neuhoff et al., “Network-constrained Cournot models of liberalized electricity 
markets: The devil is in the details,” Energy Econ., vol. 27, no. 3, pp. 495–525, 
2005. 

[63] B. F. Hobbs and F. A. M. Rijkers, “Price responses in a mixed transmission pricing 



 Final report: " Task 2: Long-Term Models for Integration of RE Technologies" 
 

146  Dec 2020 
 

system - part I : Formulation,” IEEE Trans. Power Syst., vol. 19, no. 2, pp. 707–717, 
2004. 

[64] A. Ehrenmann and K. Neuhoff, “A Comparison of Electricity Market Designs in 
Networks,” Oper. Res., vol. 57, no. 2, pp. 274–286, 2009. 

[65] J. Barquin and M. Vazquez, “Cournot equilibrium calculation in power networks: 
An optimization approach with price response computation,” IEEE Trans. Power 
Syst., vol. 23, no. 2, pp. 317–326, 2008. 

[66] J. Yao, I. Adler, and S. S. Oren, “Modeling and Computing Two-Settlement 
Oligopolistic Equilibrium in a Congested Electricity Network,” Oper. Res., vol. 56, 
no. 1, pp. 34–47, 2008. 

[67] B. F. Hobbs and U. Helman, “Complementarity-based equilibrium modeling for 
electric power markets,” in Modeling prices in competitive electricity markets, vol. 
278, no. 17, Bunn D, Ed. J. Wiley, 2004, pp. 15116–15122. 

[68] R. García-Bertrand, D. S. Kirschen, and A. J. Conejo, “Optimal Investments in 
Generation Capacity Under Uncertainty,” 16th Power Syst. Comput. Conf., pp. 1–
7, 2008. 

[69] S. J. Kazempour and A. J. Conejo, “Strategic generation investment under 
uncertainty via Benders decomposition,” IEEE Trans. Power Syst., vol. 27, no. 1, 
pp. 424–432, 2012. 

[70] T. Li and M. Shahidehpour, “Strategic bidding of transmission-constrained 
GENCOs with incomplete information,” IEEE Trans. Power Syst., vol. 20, no. 1, pp. 
437–447, 2005. 

[71] S. Wogrin, E. Centeno, and J. Barquín, “Generation capacity expansion in 
liberalized electricity markets: A stochastic MPEC approach,” IEEE Trans. Power 
Syst., vol. 26, no. 4, pp. 2526–2532, 2011. 

[72] M. Jenabi, S. M. T. Fatemi Ghomi, and Y. Smeers, “Bi-level game approaches for 
coordination of generation and transmission expansion planning within a market 
environment,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2639–2650, 2013. 

[73] M. Weibelzahl and A. Märtz, “Optimal storage and transmission investments in a 
bilevel electricity market model,” Ann. Oper. Res., pp. 1–30, 2018. 

[74] L. Maurovich-Horvat, T. K. Boomsma, and A. S. Siddiqui, “Transmission and Wind 
Investment in a Deregulated Electricity Industry,” IEEE Trans. Power Syst., vol. 30, 
no. 3, pp. 1633–1643, 2015. 

[75] I.-C. Gonzalez-Romero, S. Wogrin, and T. Gomez, “Proactive transmission 



Final report: " Task 2: Long-Term Models for Integration of RE Technologies"  
 

Dec 2020  147 
 

expansion planning with storage considerations,” Energy Strateg. Rev., vol. 24, 
no. November 2018, pp. 154–165, 2019. 

[76] I.-C. Gonzalez-Romero, S. Wogrin, and T. Gomez, “What is the cost of disregarding 
market feedback in transmission expansion planning ?,” in 2019 International 
Conference on Smart Energy Systems and Technologies (SEST), 2019, pp. 1–6. 

[77] J. H. Roh, M. Shahidehpour, and Y. Fu, “Market-based coordination of 
transmission and generation capacity planning,” IEEE Trans. Power Syst., vol. 22, 
no. 4, pp. 1406–1419, 2007. 

[78] S. Jin and S. M. Ryan, “Capacity expansion in the integrated supply network for an 
electricity market,” IEEE Trans. Power Syst., vol. 26, no. 4, pp. 2275–2284, 2011. 

[79] L. Baringo and A. J. Conejo, “Transmission and wind power investment,” IEEE 
Trans. Power Syst., vol. 27, no. 2, pp. 885–893, 2012. 

[80] L. Baringo and A. Baringo, “A stochastic adaptive robust optimization approach 
for the generation and transmission expansion planning,” IEEE Trans. Power Syst., 
vol. 33, no. 1, pp. 792–802, 2018. 

[81] Y. Tohidi, M. R. Hesamzadeh, and F. Regairaz, “Sequential Coordiantion of 
Transmission Expansion Planning With Strategic Generation Investments,” IEEE 
Trans. Power Syst., vol. 32, no. 4, pp. 2521–2534, 2017. 

[82] Y. Dvorkin et al., “Co-planning of Investments in Transmission and Merchant 
Energy Storage,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 1–1, 2017. 

[83] T. Akbari, S. Zolfaghari Moghaddam, E. Poorghanaat, and F. Azimi, “Coordinated 
planning of generation capacity and transmission network expansion: A game 
approach with multi-leader-follower,” Int. Trans. Electr. Energy Syst., vol. 27, no. 
7, pp. 1–9, 2017. 

[84] P. Pisciella, M. Bertocchi, and M. T. Vespucci, “A leader-followers model of power 
transmission capacity expansion in a market driven environment,” Comput. 
Manag. Sci., vol. 13, no. 1, pp. 87–118, 2016. 

[85] S. Jin, S. M. Ryan, and A. Sets, “A Tri-Level Model of Centralized Transmission and 
Decentralized Generation Expansion Planning for an Electricity Market — Part I,” 
IEEE Trans. Power Syst., vol. 29, no. 1, pp. 132–141, 2014. 

[86] E. E. Sauma and S. S. Oren, “Economic criteria for planning transmission 
investment in restructured electricity markets,” IEEE Trans. Power Syst., vol. 22, 
no. 4, pp. 1394–1405, 2007. 

[87] D. Pozo, E. Sauma, and J. Contreras, “When doing nothing may be the best 



 Final report: " Task 2: Long-Term Models for Integration of RE Technologies" 
 

148  Dec 2020 
 

investment action: Pessimistic anticipative power transmission planning,” Appl. 
Energy, vol. 200, pp. 383–398, 2017. 

[88] D. Pozo, J. Contreras, and E. Sauma, “If you build it, he will come: Anticipative 
power transmission planning,” Energy Econ., vol. 36, pp. 135–146, 2013. 

[89] S. Jin and S. M. Ryan, “A tri-level model of centralized transmission and 
decentralized generation expansion planning for an electricity market-Part II,” 
IEEE Trans. Power Syst., vol. 29, no. 1, pp. 142–148, 2014. 

[90] D. Pozo, E. E. Sauma, and J. Contreras, “A three-level static MILP model for 
generation and transmission expansion planning,” IEEE Trans. Power Syst., vol. 
28, no. 1, pp. 202–210, 2013. 

[91] S. S. Taheri, J. Kazempour, and S. Seyedshenava, “Transmission expansion in an 
oligopoly considering generation investment equilibrium,” Energy Econ., vol. 64, 
pp. 55–62, 2017. 

[92] A. Motamedi, H. Zareipour, M. O. Buygi, and W. D. Rosehart, “A transmission 
planning framework considering future generation expansions in electricity 
markets,” IEEE Trans. Power Syst., vol. 25, no. 4, pp. 1987–1995, 2010. 

[93] F. Verástegui, A. Lorca, D. Olivares, M. Negrete, and P. Gazmuri, “An Adaptive 
Robust Optimization Model for Power Systems Planning with Operational 
Uncertainty,” vol. 8950, no. MAY, pp. 1–11, 2019. 

[94] A. Moreira, D. Pozo, A. Street, and E. Sauma, “Reliable Renewable Generation and 
Transmission Expansion Planning: Co-Optimizing System’s Resources for Meeting 
Renewable Targets,” IEEE Trans. Power Syst., 2017. 

[95] F. E. R. C. (FERC). F. Order, “FERC Order 1000 transmission planning and cost 
allocation,” 2011. 

[96] M. de E. de Chile, Ley 20936 - Establece un nuevo sistema de transmisión eléctrica 
y crea un organismo coordinador independiente del sistema eléctrico nacional. 
Available in Spanish. 

[97] P. Joskow and J. Tirole, “Merchant transmission investment,” J. Ind. Econ., 2005. 

[98] T. Akbari and M. T. Bina, “Merchant transmission capacity investment: A 
mathematical program with equilibrium constraint formulation,” Electr. Power 
Components Syst., vol. 44, no. 1, pp. 82–89, 2016. 

[99] A. H. van der Weijde and B. F. Hobbs, “The economics of planning electricity 
transmission to accommodate renewables: Using two-stage optimisation to 
evaluate flexibility and the cost of disregarding uncertainty,” Energy Econ., vol. 



Final report: " Task 2: Long-Term Models for Integration of RE Technologies"  
 

Dec 2020  149 
 

34, no. 6, pp. 2089–2101, 2012. 

[100] S. Pineda, H. Bylling, and J. M. Morales, “Efficiently solving linear bilevel 
programming problems using off-the-shelf optimization software,” Optim. Eng., 
vol. 19, no. 1, pp. 187–211, 2018. 

[101] J. Fortuny-Amat and B. McCarl, “A representation and economic interpretation of 
a two-level programming problem,” J. Oper. Res. Soc., vol. 32, no. 9, pp. 783–792, 
1981. 

[102] M. V. Pereira, S. Granville, M. H. C. M. H. C. Fampa, R. Dix, and L. A. Barroso, 
“Strategic Bidding Under Uncertainty: A Binary Expansion Approach,” IEEE Trans. 
Power Syst., vol. 20, no. 1, pp. 180–188, 2005. 

[103] S. Pineda and J. M. Morales, “Solving Linear Bilevel Problems Using Big-Ms: Not 
All That Glitters Is Gold,” IEEE Trans. Power Syst., vol. PP, no. c, p. 1, 2018. 

[104] J. M. Arroyo, “Bilevel programming applied to power system vulnerability analysis 
under multiple contingencies,” IET Gener. Transm. Distrib., vol. 4, no. 2, p. 178, 
2010. 

[105] S. Siddiqui and S. A. Gabriel, “An SOS1-Based Approach for Solving MPECs with a 
Natural Gas Market Application,” Networks Spat. Econ., vol. 13, no. 2, pp. 205–
227, 2013. 

[106] J. H. Roh, M. Shahidehpour, and L. Wu, “Market-based generation and 
transmission planning with uncertainties,” IEEE Trans. Power Syst., vol. 24, no. 3, 
pp. 1587–1598, 2009. 

[107] S. Dehghan, N. Amjady, and A. J. Conejo, “Reliability-Constrained Robust Power 
System Expansion Planning,” IEEE Trans. Power Syst., 2016. 

[108] Q.-Y. Xu and B. F. Hobbs, “Economic Value of Model Enhancement in Transmission 
Planning Optimization,” pp. 1–8. 

[109] D. Tejada, M. Domeshek, and S. Wogrin, “Enhanced Representative Days and 
System States Modeling for Energy Storage Investment Analysis,” pp. 1–8. 

[110] F. D. Munoz, S. Wogrin, S. S. Oren, and B. F. Hobbs, “Economic Inefficiencies of 
Cost-Based Electricity Market Designs,” SSRN Electron. J., 2017. 

[111] S. Wogrin, B. Hobbs, D. Ralph, E. Centeno, and J. Barquın, “Open versus closed 
loop capacity equilibria in electricity markets under perfect and oligopolistic 
competition—the case of symmetric and asymmetric electricity,” pp. 1–36, 2011. 

[112] E. E. Sauma and S. S. Oren, “Do generation firms in restructured electricity 
markets have incentives to support social-welfare-improving transmission 



 Final report: " Task 2: Long-Term Models for Integration of RE Technologies" 
 

150  Dec 2020 
 

investments?,” Energy Econ., vol. 31, no. 5, pp. 676–689, 2009. 

[113] IEA, “Energy Storage: Tracking clean energy progress.” [Online]. Available: 
https://www.iea.org/tcep/energyintegration/energystorage/. [Accessed: 28-
Nov-2019]. 

[114] Q. Xu, S. Li, and B. F. Hobbs, “Generation and storage expansion co-optimization 
with consideration of unit commitment,” in 2018 International Conference on 
Probabilistic Methods Applied to Power Systems, PMAPS 2018 - Proceedings, 
2018. 

[115] P. Neetzow, A. Pechan, and K. Eisenack, “Electricity storage and transmission: 
Complements or substitutes?,” Energy Econ., 2018. 

[116] F. Steinke, P. Wolfrum, and C. Hoffmann, “Grid vs. storage in a 100% renewable 
Europe,” Renew. Energy, 2013. 

[117] H. po Chao and R. Wilson, “Coordination of electricity transmission and 
generation investments,” Energy Econ., vol. 86, p. 104623, 2020. 

[118] L. G. T. Carpio and A. O. Pereira, “Economical efficiency of coordinating the 
generation by subsystems with the capacity of transmission in the Brazilian 
market of electricity,” Energy Econ., vol. 29, no. 3, pp. 454–466, 2007. 

[119] I.-C. Gonzalez-Romero, S. Wogrin, and T. Gomez, “A Review on Generation and 
Transmission Expansion Co-Planning Models under a Market Environment,” IET 
Gener. Transm. Distrib., 2019. 

[120] S. S. Taheri, J. Kazempour, and S. Seyedshenava, “Transmission expansion in an 
oligopoly considering generation investment equilibrium,” Energy Econ., vol. 64, 
pp. 55–62, 2017. 

[121] WindEurope, “Creating a business case for wind after 2020,” 2017. [Online]. 
Available: https://windeurope.org/wp-content/uploads/files/policy/position-
papers/WindEurope-Long-Term-Investment-Signals.pdf. 

[122] “CNMC,” Cálculo de la tasa de retribución financiera de las actividades del sector 
eléctrico, 2018. [Online]. Available: https://www.cnmc.es/2018-11-02-la-cnmc-
publica-la-metodologia-de-calculo-de-la-tasa-de-retribucion-financiera-de-las. 

[123] ACER, “ON THE EXEMPTION REQUEST FOR THE AQUIND,” 2018. [Online]. 
Available: 
https://www.acer.europa.eu/Official_documents/Acts_of_the_Agency/Individu
al decisions/ACER Decision 05-2018 on AQUIND.pdf. 

[124] Federal Energy Regulatory Commission (FERC)., 162 FERC | 61,097. 



Final report: " Task 2: Long-Term Models for Integration of RE Technologies"  
 

Dec 2020  151 
 

https://www.ferc.gov/CalendarFiles/20180212172821-ER18-435-000.pdf, 2018. 

[125] S. A. R. Afiei, S. G. Oldani, and H. F. Alaghi, “A network constrained bi-level model 
for optimal generation expansion planning and optimal determination of feed-in 
tariffs for renewable energy resources,” vol. 2, no. 4, pp. 1–9, 2018. 

[126] S. A. Rafiei, B. Mohammadi-Ivatloo, S. Asadi, S. Goldani, and H. Falaghi, “Bi-level 
model for generation expansion planning with contract pricing of renewable 
energy in the presence of energy storage,” IET Renew. Power Gener., 2019. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Santa Cruz de Marcenado, 26 

28015 Madrid 
Tel +34 91 542 28 00 

Fax + 34 91 542 31 76 
secretaria.tecnica@iit.comillas.edu 

www.iit.comillas.edu 


	1 Long-Term Models for Integration of RE Technologies
	2 Review on generation and transmission expansion co-planning models under a market environment
	2.1 GEPTEP modelling approaches
	Network Representation
	Generation Representation
	End Effect
	Size Reduction Techniques
	Most recent developments
	Uncertainty Representation
	Storage Modelling
	Modelling Approaches Gaps

	2.2 Co-planning equilibrium models
	Equilibrium Structure
	Simultaneous One-Level Structure
	Simultaneous Market Models
	Simultaneous Co-planning Models

	Hierarchical Multi-level Structure
	Hierarchical Market Models
	Hierarchical GEPTEP Models

	Equilibrium Structure Gaps

	Regulatory Framework
	Proactive versus Reactive Planning Approaches
	Proactive Planning Approach
	Reactive Planning Approach

	Perfectly Competitive versus Oligopolistic GEPTEP Approaches
	Competitive Market
	Oligopolistic Market

	Regulatory Framework Gaps

	Solution Techniques
	Mathematical Programs with Equilibrium Constraints
	Equilibrium Problem with Equilibrium Constraints
	Solution Technique Gaps

	Most recent developments
	Representation of Storage in GEPTEP Co-planning Models
	Representation of Uncertainty in Investment and Operating Decisions
	Gaps in Storage and Uncertainty Modelling Approaches

	Concluding remarks


	3 Transmission- and generation-expansion planning under perfect competition
	3.1 Deterministic Transmission and Generation Expansion Planning
	Notation
	Sets
	Parameters
	Variables

	Model Description
	Objective Function
	Constraints
	Capacity Constraint
	Excluding UCC
	Including UCC

	Commitment, startup logic of thermal units
	Storage Constraints
	Network Modeling
	Transportation Model
	DC linearized Model
	Reference angle
	Integer constraint


	Case Study
	Data
	Results

	Conclusions

	3.2 Comparing Scenario-Based Transmission and Generation Expansion Planning Models Under Uncertain Wind Production
	Formulation
	Notation
	Sets/Indices
	Parameters
	Variables

	Basic TEP/GEP Model Formulation and Modeling Assumptions
	Scenario-Based TEP/GEP Model Formulations
	Stochastic Programming
	Mean-Value Programming
	Minimum-Maximum Cost Robust Programming
	Minimum-Maximum Regret Robust Programming


	Design of Power System Model
	Selection of Wind Capacity Factor Scenarios
	Results
	Conclusions


	4 Transmission- and generation-expansion planning models for imperfectly competitive markets
	4.1 Notation
	Sets / Indices
	Parameters
	Variables

	4.2 Proactive Transmission Expansion Planning With Storage Considerations
	Proactive model formulation
	Conjectured-Price Market
	Upper Level
	Lower Level: market equilibrium
	Consumer: Demand Utility maximization
	GENCO problem
	TSO problem
	Market Clearing

	KKT Conditions
	Linearized Complementarities
	MILP formulation

	Case Study
	Data
	Operation and Investment Results
	Storage Results

	Conclusions

	4.3 Transmission expansion planning under imperfect market competition: social planner versus merchant investor
	Introduction
	Regulatory Approaches
	Literature Review
	Policy Question and Contributions

	Mathematical Formulation
	Benchmark: Cost Minimization Model (CMM)
	Bi-level Problem: Proactive Model (PM)
	Regret Computation: CMM vs PM
	Bi-level Problem: Merchant TSO

	Case study
	Illustrative 3-Node Case
	Results: Single Ownership structure (SG)
	Investment Results
	Operation Results
	Regret of disregarding market feedback

	Results: Mixed Ownership Structure (MX)
	Social Planner
	Merchant TSO


	IEEE-24 bus test case
	Merchant TSO vs Social Planner
	Welfare Loss and Generation Mix Distortion


	Conclusions and Policy Implications


	5 Comparing Scenario-Based Transmission and Generation Expansion Planning Models for Imperfectly Competitive Markets Under Uncertain Wind Production
	5.1 Notation
	5.2 Model Description
	1. Market Responsive Framework
	2. Deterministic Bi-level Proactive Model (DPM)
	3. Stochastic Bi-level Proactive Model (SPM)
	Upper Level: TEP
	Lower Level: market equilibrium
	Consumer: Demand Utility maximization
	GENCO: Profit Maximization Problem
	SO
	Market Clearing

	KKT Conditions
	Equivalent Optimization problem

	4. Min-Max Regret Proactive Model (RPM)
	Lower Level Min-Max Regret (LLR)
	Complete Problem with Lower Level Min-Max Regret
	Upper level Min-Max Regret (ULR)
	Complete Problem with Upper Level Regret


	5.3 Case Study
	5.4 Results


